Четырёхходовой смесительный клапан. Реверсивный клапан кондиционера

Четырехходовой клапан – это элемент системы отопления, к которому подключены четыре трубы, имеющие теплоносители разной температуры, используется, чтобы предотвратить перегрев твердотопливного котла. Термостатический клапан не допускает превышение температуры внутри котла выше 110 °C. Уже при температуре 95 °C он запускает холодную воду для охлаждения системы.

Конструкция четырехходового клапана

Корпус сделан из латуни, к нему присоединены 4 соединительных патрубка. Внутри корпуса расположена втулка и шпиндель, работа которого имеет сложную конфигурацию.

Термостатический смесительный кран выполняет такие функции:

  • Смешивание потоков воды разных температур. Благодаря смешиванию работает плавное регулирование нагрева воды;
  • Защита котла. Четерехходовой смеситель предотвращает появление коррозии, продлевая этим срок эксплуатации оборудования.

Схема четырехходового смесителя

Принцип работы такого клапана для отопления заключается во вращении шпинделя внутри корпуса. Причем это вращение должно быть свободным, так как втулка не имеет резьбы. Рабочая часть шпинделя имеет две выборки, через которые открывается поток по двум проходам. Таким образом, поток будет регулироваться и не сможет пройти напрямую ко второй выборке. Поток сможет поворачивать в любой из патрубков, расположенных с левой или правой стороны от него. Так, все потоки, идущие с противоположных сторон, смешиваются и распределяются по четырем патрубкам.

Существуют конструкции, в которых вместо шпинделя работает нажимной шток, но такие устройства не могут смешивать потоки.

Работа клапана контролируется двумя способами:

  • Ручной. Распределение потоков требует установки штока в одном определенном положении. Регулировать это положение нужно вручную.
  • Автоматический. Вращение шпинделя происходит в результате получаемой команды от внешнего датчика. Таким образом, в системе отопления постоянно удерживается заданная температура.

Четырехходовой смесительный клапан обеспечивает стабильный расход холодного и горячего теплоносителя. Принцип его работы не требует установки дифференциального байпаса, ведь клапан сам пропускает нужное количество воды. Устройство используется там, где необходима регулировка температуры. Прежде всего, это система радиаторного отопления с твердотопливным котлом. Если в других случаях регулирование теплоносителей происходит с помощью гидронасоса и байпаса, то здесь работа клапана полностью заменяет эти два элемента. В итоге котел работает в стабильном режиме, постоянно получая дозированное количество теплоносителя.

Отопление с четырехходовым клапаном

Монтаж системы отопления с четырехходовым клапаном:


Схема подключения отопительной системы с четырехходовым смесителем состоит из следующих элементов:

  1. Котел;
  2. Четырехходовый термостатический смеситель;
  3. Предохранительный клапан;
  4. Редукционный вентиль;
  5. Фильтр;
  6. Шаровой кран;
  7. Насос;
  8. Отопительные батареи.

Смонтированную отопительную систему нужно обязательно промыть водой. Это необходимо, чтобы из нее удалились различные механические частицы. После этого должна быть проверена работа котла под давлением 2 бар и при выключенном расширительном баке. Следует обратить внимание на то, что между началом полноценной работы котла и его проверкой под гидравлическим давлением должен пройти небольшой промежуток времени. Ограничение по времени обусловлено тем, что при долгом отсутствии воды в отопительной системе, она будет подвержена коррозии.

Как сделать систему отопления с четырехходовым клапаном


Четырехходовой клапан для отопления позволяет смешивать и направлять 4 потока теплоносителя. Принцип работы четырехходового клапана заключен в возможности смешения теплоносителя в разных пропорциях.

Источник: domotopim.ru

Где купить?

Новости на тему «четырехходовой клапан для отопления»

11.02.2015 - Электротехнический рынок России и СН

K200.M.0. Контроллер VT.K200.M Валтек предназначен для измерения и автоматического пропорционально-интегрально-дифференциального (ПИД) регулирования температуры теплоносителя в смесительных узлах систем напольного отопления в соответствии с заданным графиком....

Найдено в интернете по запросу «четырехходовой клапан для отопления»


Трёхходовой клапан для отопления с терморегулятором

Правильно выполненная обвязка отопительного контура позволяет создать в доме максимально комфортные температурные условия проживания. Не менее важна и комплектация тепловой магистрали. Так, например, трехходовой клапан для отопления с терморегулятором, как и прочие идентичные по функциональности элементы играют значительную роль в устройстве тепловой магистрали.

  1. Чем должен оснащаться отопительный контур?
  2. Смесительные краны
  3. Термостаты

Чем должен оснащаться отопительный контур?

Несмотря на то, что основная группа защиты для отопления подбирается непосредственно сотрудниками магазина, где производится покупка оборудования, не будет лишним, если вы узнаете, что именно должно входить в набор заборной арматуры.


Смесительные краны

Посредством этих деталей есть возможность осуществления качественной регулировки температурного режима в тепловом блоке. Принцип работы подобного устройства прост: при повороте рукоятки отопительного трехходового крана происходит открытие байпаса, что обусловливает втягивание остывшей воды в отсек подачи, где происходит смешение горячей и холодной воды.


По такой схеме можно добиться необходимого температурного режима в помещении. Действует трехходовой клапан гибко, не создавая резких скачков температур в обогревательной установке. Как правило, такими смесительными блоками оснащаются практически все коллекторных узлы обогревательных систем частных домов. Это позволяет снизить расходы на потребление энергетических ресурсов для прогрева той или иной комнаты, которую, при необходимости, можно попросту отключить от основной магистрали.

Группа безопасности нагревательного устройства

Блок защиты нагревателя включает в себя предохранительный клапан, прибор для измерения давления и дроссель для спуска воздуха из теплового узла. Благодаря этим элементам можно предотвратить как поломку самого оборудования, так и избежать аварийной ситуации в случае повышения давления в магистрали. Ведь это может привести к разрыву трубопровода и, как следствие, кто-либо, находящийся рядом в этот момент, может сильно пострадать.

Вне зависимости от выбора типа отопительной системы, она должна в обязательно порядке комплектоваться предохранительным гидровентилем для котла.

Предохранительный дроссель может быть выполнен в двух исполнениях – открытый и закрытый. Первый вариант характеризуется отсутствием противодавления и выводом лишней жидкости из теплового контура. Тогда как посредством закрытого регулировочного клапана выполняется сброс избыточной жидкости в трубопровод. При этом работает еще и противодавление.


С целью увеличения эффективности обогревательного блока необходимо правильно выполнить установку группы защитной арматуры. Весь свод правил присутствует в специальном документе СНиП. А представить его к вашему вниманию в полном объеме не представляется возможным, поскольку все зависит от конкретного оборудования, его мощности и прочих индивидуальных факторов. Но вместе с тем основные принципы монтажа запорной арматуры все же можем рассмотреть.

Трёхходовой клапан для отопления с терморегулятором, равно как другие элементы отопительной системы, определяются исключительно по показателям давления и диаметру трубопровода. Это императивное требование определяет ГОСТ и любое отклонения от нормы является нарушением, что в итоге может привести к аварийной ситуации.

Особенности монтажа запорной арматуры


  1. Установка предохранительного клапана осуществляется на подающем трубопроводе в непосредственной близости с нагревательным агрегатом.
  2. В тепловых контурах, которые снабжаются горячей водой, гидроклапан ставится на выходе горячей воды в наивысшей точке бойлера.
  3. Обустройство системы водяного обогрева характеризуется отсутствием всевозможных приборов между запорной арматурой и тепловым контуром.
  4. Спускные клапана на отопление следует стыковать к магистральным трубам сравнительного большого диаметрального размера. А их вывод осуществляется в любое безопасное место или канализационную сеть.

Во время монтажа отопительного узла категорически запрещается сужать трубы на диаметр меньше, чем имеющийся диаметральный размер вентиля.

ВИДЕО: Трехходовой клапан в системе

При подключении отопления в двухэтажных домах запорная арматура устанавливается отдельно на каждом этаже. Специалисты рекомендуют устанавливать ее как можно больше, так котел будет проще обслуживать.

  1. Настройка дросселей производится на 15-25% больше, чем рабочее давление в тепловом контуре.
  2. Необходимо выполнять проверку работоспособности вентилей как минимум один раз в год, желательно после начала отопительного сезона. А делается это очень просто: нужно произвести принудительное открытие дросселя.

Перепускные и обратные вентили


Для стабилизации давления в системе необходим обратный вентиль для отопления. Кроме этого применяется также еще и другой конструктивный элемент – перепускной клапан отопительной системы. Принцип его работы – такой же, как и у предохранительного, но в том случае патрубок соединяется с обраткой. При увеличении давления этот прибор включается и осуществляет перевод теплоносителя в обратный контур. А с целью уравновешивания этой характеристики используется обратный гидровентиль.

Принцип функционирования: посредством обратного клапана в системе отопления осуществляется перемещение жидкости в одну сторону, препятствуя ее обратному перемещению.

Термостаты

Термостат характеризуется применением двух основных конструктивных элементов – вентиля и термоэлемента. Первый применяется в качестве регулятора теплоотдачи. Это происходит за счет изменения расхода теплоносителя в зависимости от температуры воздуха. В свою же очередь термоэлемент позволяет контролировать температуру теплоносителя и, при необходимости, подогревать или охлаждать его.


В зависимости от перемещения золотника, которым оснащен гидровентиль, эта конструктивная делать производится в двух исполнениях: малоподъемные и полноподъемные. В первом случае высота подъема золотника приравнивается к 0,05 диаметрального размера седла. Как правило, малоподъемные дросселя применяются в тех блоках, в которых нет необходимости в высокой пропускной способности. А вот что касается полноподъемных дросселей, то они имеют высоту золотника равную 0,25 диаметральной величины седла. Такие детали, в большинстве своем, используются в тепловых магистралях с газообразной средой.

Другие запорные арматурные комплектующие

Помимо вышеуказанных конструктивных элементов используются еще и игольчатые дросселя. Они представляют собой затвор в виде узкого конуса и способствуют надежному перекрытию и регулировке потоков теплоносителя при повышенных показателях давления.

Есть еще и электромагнитные вентиля, которые являют собой примитивный и наиболее доступный вариант автоматизации регулировки перемещения горячей воды по трубопроводу. Однако, чтобы использовать подобные детали крайне важно использовать воду с минимальной жесткостью и отсутствием твердых частиц.

Многие обогревательные узлы оснащаются еще компенсаторами, благодаря которым осуществляется компенсация деформаций трубопроводных магистралей под действием высоких температур. Кроме этого, такие приборы помогают снизить вибрации в системе, что также позволяет исключить возможные повреждения теплового контура.

На самом деле устройство обогревательного оборудования – это вполне посильная задача даже для того, кто ни разу в жизни не выполнял подобных процессов. И если грамотно подойти к реализации поставленной цели и выполнить работу согласно всем требования, то можно снизить вероятность возникновения аварийных ситуаций и необходимости проведения ремонтно-восстановительных мероприятий.

Вот, собственно, и весь набор запорной арматуры, который используется при устройстве теплоблоков. Теперь, когда вы знаете, что должно входить в обогревательный узел, вы сможете выполнить качественную обвязку теплового оборудования, которая прослужит вам не один десяток лет.

Трёхходовой клапан для отопления с терморегулятором


Трехходовой клапан для отопления с терморегулятором, как и прочие идентичные по функциональности элементы играют значительную роль в устройстве тепловой магистрали.

Во время нефтяного кризиса 1973-го года резко возрос спрос на установку большого числа тепловых насосов. Большинство тепловых насосов оборудованы четырехходовым соленоидным вентилем обращения цикла, используемым либо для перевода насоса на летний режим (охлаждение), либо для охлаждения наружной батареи в зимнем режиме (подогрев).
Предметом настоящего раздела является изучение работы четырехходового соленоидного клапана обращения цикла (V4V), устанавливаемого на большинстве классических тепловых насосов типа "воздух-воздух", а также систем оттайки с помощью обращения цикла (см. рис. 60.14), с целью эффективного управления направлениями движения потоков.
А) Работа V4V

Изучим схему (см. рис. 52.1) одного из таких клапанов, состоящего из большого четырехходового главного клапана и малого трехходового управляющего клапана, смонтированного на корпусе главного клапана. В данный момент нас интересует главный четыреххо-довой клапан.


"Т\ Однако нагнетающая (поз. 1) и всасы-\3J вающая (поз. 2) магистрали компресора ВСЕГДА подключаются так, как указано на схеме рис

Наконец, в корпус главного клапана врезаны 3 капилляра (поз. 7) в местах, показанных на рис. 52.1, которые соединены с управляющим электроклапан


Если V4V не смонтирован на установке, при подаче напряжения на электроклапан вы будете ожидать отчетливого щелчка, но золотник не сдвинется. Действительно, чтобы золотник внутри главного клапана сдвинулся, абсолютно необходимо обеспечить в нем разность давлений. Почему так, мы сейчас увидим.


Нагнетающая Рнаг и всасывающая Рвсас магистрали компресора всегда подключены к главному клапану так, как показано на схеме {рис. 52.2). В данный момент мы смоделируем работу трехходового управляющего электроклапана с помощью двух ручных вентилей: одного закрытого (поз. 5), а другого открытого (поз. 6). В центре главного клапана Рнаг развивает усилия, действующие на оба поршня одинаково: одно толкает золотник влево (поз. 1), другое вправо (поз. 2), в результате чего оба этих усилия взаимно уравновешиваются. Напомним, что в обоих поршнях просверлены маленькие отверстия.
Следовательно Рнаг может проходить через отверстие в левом поршне, и в полости (поз. 3) позади левого поршня также установится Рнаг, которое толкает золотник вправо. Конечно, одновременно Рнаг проникает и через отверстие в правом поршне в полость позади него (поз. 4). Однако, поскольку вентиль 6 открыт, а диаметр капилляра, соединяющего полость (поз. 4) со всасывающей магистралью гораздо больше диаметра отверстия в поршне, молекулы газа, прошедшие через отверстие, мгновенно будут всосаны во всасывающую магистраль. Поэтому давление в полости позади правого поршня (поз. 4) будет равно давлению Рвсас во всасывающей магистрали.

Таким образом, более мощная сила, обусловленная действием Рнаг, будет направлена слева направо и заставит золотник переместиться вправо, сообщая негне-тающую магистраль с левым штуцером (поз. 7), а всасывающую магистраль с правым штуцером (поз. 8).
Если теперь Рнаг направить в полость позади правого поршня (закрыть вентиль 6), а Рвсас в полость позади левого поршня (открыть вентиль 5), то преобладающее усилие будет направлено справа налево и золотник переместится влево (см. рис. 52.3).
При этом он сообщает нагнетающую магистраль с правым штуцером (поз. 8), а всасывающую магистраль с левым штуцером (поз. 7), то есть в точности наоборот по сравнению с предыдущим вариантом.

Конечно, использование двух ручных вентилей для обратимости рабочего цикла предусматривать нельзя. Поэтому сейчас мы приступим к изучению трехходового управляющего электроклапана, наиболее подходящего для автоматизации процесса обращения цикла.
Мы видели, что перемещение золотника возможно только в том случае, если существует разность между значениями Рнаг и Рвсас- Управляющий трехходовой электроклапан предназначен только для того, чтобы стравить давление либо из одной, либо из другой полости подачи поршней главного клапана. Поэтому управляющий электроклапан будет иметь очень небольшие размеры и остается неизменным для любых диаметров главного клапана.
Центральный вход этого клапана является общим выходом и соединяется с полостью всасывания {см. рис. 52.4).
Если напряжение на обмотку не подано, правый вход закрыт, а левый сообщен с полостью всасывания. И напротив, когда на обмотку подается напряжение, правый вход сообщен с полостью всасывания, а левый закрыт.

Изучим теперь простейший холодильный контур, оборудованный четырехходовым клапаном V4V (см. рис. 52.5).
Обмотка электромагнита управляющего электроклапана не запитана и его левый вход сообщает полость главного клапана, позади левого поршня золотника, с магистралью всасывания (напомним, что диаметр отверстия в поршне гораздо меньше диаметра капилляра, соединяющего магистраль всасывания с главным клапаном). Поэтому, в полости главного клапана, слева от левого поршня золотника, устанавливается Рвсас.
Поскольку справа от золотника при этом устанавливается Рнаг, под действием разности давлений золотник резко перемещается внутри главного клапана влево.
Достигнув левого упора, игла поршня (поз. А) перекрывает отверстие в капилляре, связывающем левую полость с полостью Рвсас, препятствуя тем самым прохождению газа, так как в этом теперь нет необходимости. В самом деле, наличие постоянной утечки между полостями Рнаг и Рвсас может оказывать только вредное влияние на работу компрессора

Заметим, что давление в левой полости главного клапана при этом вновь достигает значения Рнаг, но, поскольку в правой полости также установилось Рнаг, золотник больше не сможет изменить своего положения.
Теперь запомним как следует расположение конденсатора и испарителя, а также направление движения потока в капиллярном расширительном устройстве.
Перед тем, как продолжить чтение, попробуйте представить, что будет происходить, если на обмотку электромагнитного клапана подать напряжение


При подаче электропитания на обмотку электроклапана, правая полость главного клапана сообщается с магистралью всасывания и золотник резко перемещается вправо. Дойдя до упора, игла поршня прерывает отток газа в магистраль всасывания, перекрывая отверстие капилляра, соединяющего правую полость главного клапана с полостью всасывания.
В результате перемещения золотника нагнетающая магистраль теперь направлена к бывшему испарителю, который стал конденсатором. Точно так же, бывший конденсатор стал испарителем, и всасывающая магистраль теперь подсоединена к нему. Заметим, что хладагент в этом случае движется через капилляр в обратном направлении (см. рис. 52.6).
Чтобы избежать ошибок в названиях теплообменников, которые по очереди становятся то испарителем, то конденсатором, лучше всего называть их наружной батареей (теплообменник, расположенный вне помещения) и внутренней батареей (теплообменник, расположенный внутри помещения).

Б) Опасность гидроудара
При нормальной работе конденсатор заполнен жидкостью. Однако мы увидели, что в момент обращения цикла конденсатор практически мгновенно становится испарителем. То есть, в этот момент появляется опасность попадания в компрессор большого количества жидкости, даже если ТРВ полностью закрыт.
Во избежание такой опасности необходимо, как правило, на всасывающей магистрали компрессора устанавливать отделитель жидкости.
Отделитель жидкости сконструирован таким образом, чтобы в случае возникновения наплыва жидкости на выходе из главного клапана, главным образом, при обращении цикла, не допустить ее попадания в компрессор. Жидкость остается на дне отделителя, в то время как отбор давления во всасывающую магистраль производится в его верхней точке, что полностью исключает опасность попадания жидкости в компрессор.

Вместе с тем, мы видели, что масло (а следовательно, и жидкость) должно постоянно возвращаться в компрессор по линии всасывания. Чтобы дать маслу такую возможность, в нижней части всасывающего патрубка предусматривается калиброванное отверстие (иногда капилляр)...

Когда жидкость (масло или хладагент) задерживается на дне отделителя жидкости, она, через калиброванное отверстие всасывается, медленно и постепенно возвращаясь в компрессор в таких количествах, которые оказываются недостаточными, чтобы привести к нежелательным последствиям.
В) Возможные неисправности
Одна из самых сложных неисправностей клапана V4 V связана с ситуацией, когда золотник заклинивает в промежуточном положении (см. рис. 52.8).
В этот момент все четыре канала сообщаются между собой, что приводит к более или менее полному, в зависимости от положения золотника при заклинивании, перепуску газа из магистрали нагнетания в полость всасывания, что сопровождается появлением всех признаков неисправности типа "слишком слабый компрессор": снижению хо-лодопроизводительности, падению давления конденсации, росту давления кипения (см. раздел 22. "Слишком слабый компрессор ").
Такое заклинивание может произойти случайно и обусловлено оно самой конструкцией главного клапана. В самом деле, поскольку золотник имеет возможность свободного перемещения внутри клапана, он может сдвинуться и вместо того, чтобы находиться у одного из упоров, остаться в промежуточном положении в результате вибраций или механических ударов (например, после транспортировки).


Если клапан V4V еще не установлен и, следовательно, есть возможность подержать его в руках, монтажник ОБЯЗАТЕЛЬНО должен проверить положение золотника, заглянув вовнутрь клапана через 3 нижних отверстия (см. рис. 52.9).

Таким образом, он сможет очень просто обеспечить нормальное положение золотника, поскольку после того, как клапан будет припаян, смотреть вовнутрь станет слишком поздно!
Если золотник расположен неправильно (рис. 52.9, справа), его можно будет привести в желаемое состояние, постукивая одним концом клапана по деревянному бруску или куску резины (см. рис. 52.10).
Никогда не стучите клапаном о металлическую деталь, так как при этом вы рискуете повредить оконечность клапана или совсем ее разрушить.
С помощью этого очень простого приема вы сможете, например, установить золотник клапана V4V в положение охлаждения (нагнетающая магистраль сообщается с наружным теплообменником) при замене неисправного V4V на новый в реверсивном кондиционере (если это происходит в разгаре лета).

Причиной заклинивания золотника в промежуточном положении могут быть также многочисленные дефекты конструкции главного клапана или вспомогательного электроклапана.
Например, если корпус главного клапана был поврежден при ударах и получил деформацию в цилиндрической части, такая деформация будет препятствовать свобод- а ному перемещению золотника.
Один или несколько капилляров, соединяющих полости главного клапана с низконпорной частью контура, могут засориться ы или погнуться, что приведет к уменьшению их проходного сечения и не позволит обеспечить достаточно быстрый сброс давления в полостях позади поршней золотника, нарушая тем самым его нормальную работу (напомним еще раз, что диаметр этих капилляров должен быть существенно больше диаметра отверстий, просверленных в каждом из поршней).
Следы чрезмерного пережога на корпусе клапана и плохой внешний вид паяных соединений являются объективным показателем квалификации монтажника, производившего пайку с помощью газовой горелки. Действительно, во время пайки следует обязательно защищать корпус главного клапана от нагревания, обертывая его мокрой тряпкой или смоченной асбестовой бумагой, так как поршни и золотник снабжены уплотняющими нейлоновыми (фторопластовыми) кольцами, которые одновременно улучшают скольжение золотника внутри клапана. При пайке, если температура нейлона превысит 100°С, он утрачивает свои способности герметизации и антифрикционные характеристики, прокладка получает непоправимые повреждения, что сильно повышает вероятность заклинивания золотника при первой же попытке переключения клапана.
Напомним, что быстрое перемещение золотника при обращении цикла происходит под действием разности между Рнаг и Рвсас. Следовательно, перемещение золотника становится невозможным, если эта разность АР слишком мала (обычно ее минимально допустимое значение составляет около 1 бар). Таким образом, если управляющий электроклапан задействуется тогда, когда перепад АР недостаточен (например, при запуске компрессора), золотник не сможет беспрепятственно перемещаться и появляется опасность его заклинивания в промежуточном положении.
Заедание золотника может также происходить из-за нарушений в работе управляющего электроклапана, например, при недостаточном напряжении питания или неправильном монтаже механизма электромагнита. Заметим, что вмятины на сердечнике электромагнита (вследствие ударов) или его деформация (при разборке или в результате падения) не позволяют обеспечить нормальное скольжение втулки сердечника, что также может привести к заеданию клапана.
Не лишне напомнить, что состояние холодильного контура должно быть абсолютно безупречным. В самом деле, если в обычном холодильном контуре крайне нежелательно присутствие частичек меди, следов припоя или флюса, то для контура с четырехходовым клапаном - тем более. Они могут заклинить его или закупорить отверстия в поршнях и капиллярные каналы клапана V4V. Поэтому, прежде чем приступить к демонтажу или сборке такого контура, постарайтесь продумать максимум предосторожностей, которые вы должны соблюсти.
Наконец, подчеркнем, что клапан V4V настоятельно рекомендуется монтировать в горизонтальном положении, чтобы избежать даже незначительного опускания золотника под действием собственного веса, так как это может вызывать постоянные утечки через иглу верхнего поршня, когда золотник будет находиться в верхнем положении. Возможные причины заклинивания золотника представлены на рис. 52.11.
Теперь встает вопрос. Что делать, если золотник заклинило?

Перед тем, как требовать от клапана V4V нормальной работы, ремонтник должен вначале обеспечить условия этой работы со стороны контура. Например, недостаток хладагента в контуре, обуславливая падение как Рнаг, так и Рвсас, может повлечь за собой слабый перепад ДР, недостаточный для свободного и полного переброса золотника.
Если внешний вид V4V (отсутствие вмятин, следов ударов и перегрева) представляется удовлетворительным и есть уверенность в отсутствии неисправностей электрооборудования (очень часто такие неисправности приписывают клапану V4V, тогда как речь идет только о дефектах электрики), ремонтник должен задаться следующим вопросом:

К какому теплообменнику (внутреннему или наружному) должна подходить нагнетающая магистраль компрессора и в каком положении (справа или слева) должен находиться золотник при данном режиме работы установки (нагрев или охлаждение) и данной ее конструкции (нагрев или охлаждение при обесточенном управляющем электроклапане)?


Когда ремонтник уверенно определил требуемое нормальное положение золотника (справа или слева), он может попытаться поставить его на место, слегка, но резко, постукивая по корпусу главного клапана с той стороны, где должен находиться золотник, киянкой или деревянным молотком (если нет киянки, никогда не применяйте обычный молоток или ку-валдочку, предварительно не приложив к клапану деревянную проставку, иначе вы рискуете серьезно повредить корпус клапана, см. рис. 52.12).
В примере на рис. 52.12 удар киянки справа заставляет золотник переместиться вправо (к сожалению, разработчики, как правило, не оставляют вокруг главного клапана пространства для нанесения удара!).

Действительно, нагнетающий патрубок компрессора должен быть очень горячим (опасайтесь ожогов, так как в некоторых случаях его температура может достигать Ю0°С). Всасывающий же патрубок, как правило, холодный. Следовательно, если золотник сдвинут вправо, штуцер 1 должен иметь температуру, близкую к температуре нагнетающего патрубка, или, если золотник сдвинут влево, близкую к температуре всасывающего патрубка.
Мы видели, что небольшое количество газов из линии нагнетания (следовательно, очень горячих) проходит в течение короткого отрезка времени, когда происходит переброс золотника, по двум капиллярам, один из которых соединяет полость главного клапана с той стороны, где находится золотник, с одним из входов электроклапана, а другой соединяет выход управляющего электроклапана со всасывающей магистралью компрессора. Дальше прохождение газов прекращается, поскольку игла поршня, дошедшего до упора, перекрывает отверстие капилляра и предотвращает попадпние в него газов. Поэтому нормальная температура капилляров (которые можно потрогать кончиками пальцев), также как и температура корпуса управляющего электроклапана, должны быть почти одинаковыми с температурой корпуса главного клапана.
Если ощупывание дает другие результаты, не остается ничего другого, как попытаться разобраться в них.


Допустим, при очередном техническом обслуживании ремонтник обнаруживает небольшой рост давления всасывания и небольшое падение давления нагнетания. Поскольку левый нижний штуцер горячий, он делает вывод о том, что золотник находится справа. Ощупывая капилляры, он замечает, что правый капилляр, а также капилляр, соединяющий выход электроклапана со всасывающей магистралью, имеют повышенную температуру.
На основании этого он может сделать вывод о том, что между полостями нагнетания и всасывания существует постоянная утечка и, следовательно, игла правого поршня не обеспечивает герметичности (см. рис. 52.14).
Он решает повысить давление нагнетания (например, закрывая картоном часть конденсатора), чтобы увеличить разность давлений и тем самым попробовав прижать золотник к правому упору. Затем он производит переброску золотника влево, чтобы убедиться в нормальной работе клапана V4V, после чего возвращает золотник в начальное положение (повышая давление нагнетания, если разность давлений недостаточна, и проверяя реакцию V4V на работу управляющего электроклапана).
Таким образом, на основании указанных экспериментов он может сделать соответствующие выводы (в том случае, если расход утечки продолжает оставться значительным, нужно будет предусматривать замену главного клапана).

В давление нагнетания очень низкое, а давление всасывания аномально высокое. Поскольку все четыре штуцера клапана V4V довольно горячие, ремонтник делает вывод о том, что золотник заклинило в промежуточном положении.
Ощупывание капилляров показывает ремонтнику, что все 3 капилляра горячие, следовательно причина неисправности кроется в управляющем клапане, в котором одновременно оказались открытыми оба проходных сечения.

В этом случае следует полностью проверить все узлы управляющего клапана (механический монтаж электромагнита, электрические цепи, напряжение питания, потребляемый ток, состояние сердечника электромагнита)
и многократно попробовать, включая и выключая клапан, возвратить его в рабочее состояние, удалив возможные посторонние частицы из-под одного или обоих его седел (если дефект не устраняется, нужно будет заменить управляющий клапан).
Что касается катушки электромагнита управляющего клапана (и вообще, катушек любых электромагнитных клапанов), некоторые начинающие ремонтники хотели бы получить рекомендации по поводу того, как определить, работает катушка или нет. В самом деле, для того, чтобы катушка возбуждала магнитное поле, недостаточно подать на нее напряжение, так как внутри катушки может иметь место обрыв провода.
Некоторые монтажники устанавливают жало отвертки на крепежный винт катушки, чтобы оценить силу магнитного поля (однако это не всегда удается), другие снимают катушку и следят за сердечником электромагнита, прислушиваясь к характерному стуку, сопровождающему его перемещение, третьи, сняв катушку, вводят в отверстие для сердечника отвертку, чтобы убедиться в том, что она втягивается под действием силы магнитного поля.
Воспользуемся случаем, чтобы сделать небольшое уточнение...


В качестве примера рассмотрим классическую катушку электромагнитного клапана с номи-^| нальным напряжением питания 220 В.
Как правило, разработчиком допускается длительное повышение напряжения по отношению к номиналу не более, чем на 10% (то есть около 240 вольт), без риска чрезмерного перегрева обмотки и гарантируется нормальная работа катушки при длительном падении напряжения не более, чем на 15% (то есть 190 вольт). Эти допустимые пределы отклонения напряжения питания электромагнита легко объяснимы. Если напряжение питания слишком высокое, обмотка сильно нагревается и может сгореть. И напротив, при низком напряжении, магнитное поле оказывается слишком слабым и не позволит обеспечить втягивание сердечника вместе со штоком клапана внутрь катушки (см. раздел 55. "Различные проблемы электрооборудования ").
Если предусмотренное для нашей катушки напряжение питания составляет 220 В, а номинальная мощность равна 10 Вт, можно предположить, что она будет потреблять ток I = Р / U, то есть 1 = 10 / 220 = 0,045 Ар (или 45 мА).
Напряжение подано I = 0,08 А А,
Сильная опасность перегорания катушки
На самом деле, катушка будет потреблять ток около 0,08 А (80 мА), так как для переменного тока Р = U x I x coscp, а для катушек электромагнитов coscp, как правило, близок к 0,5.
Если из катушки, находящейся под напряжением, извлечь сердечник, то потребляемый ток возрастет до 0,233 А (то есть, почти в 3 раза больше, чем номинальное значение). Поскольку выделяющееся при прохождении тока тепло пропорционально квадрату силы тока, значит катушка будет нагреваться в 9раз больше, чем в номинальных условиях, что сильно увеличивает опасность ее сгорания.
Если в катушку, находящуюся под напряжением, вставить металлическую отвертку, магнитное поле втянет ее вовнутрь и потребляемый ток слегка упадет (в рассматриваемом примере до 0,16 А, то есть в два раза больше номинального значения, см. рис. 52.16).
Запомните, что никогда не следует демонтировать катушку электромагнита, находящуюся под напряжением, так как она может очень быстро сгореть.
Хорошим способом определения целостности обмотки и проверки наличия напряжения питания является использование токоизмерителъных клещей (трансформаторных клещей), которые раскрывают и придвигают к катушке для обнаружения магнитного поля, создаваемого ею при нормальной работе

Если катушка возбуждена, стрелка амперметра отклоняется
Трансформаторные клещи, реагируя по своему назначению на изменение магнитного потока возле катушки, позволяют, в случае ее неисправности, зарегистрировать достаточно высокую величину силы тока на амперметре {которая, впрочем, абсолютно ничего не означает), что быстро дает уверенность в исправности электрических цепей электромагнита.

Заметим, что использование открытых трансформаторных токоизмерительных клещей допустимо для любых обмоток, питающихся переменным током (электромагниты, трансформаторы, двигатели...), в момент, когда проверяемая обмотка не находится в непосредственной близости от другого источника магнитного излучения.

Упражнение №1

Ремонтник должен произвести замену клапана V4 V в разгар зимы на установке, представленной на рис. 52.18.

После слива хладагента из установки и снятия неисправного V4V ремонтник задается следующим вопросом:

Имея в виду, что наружная и внутренняя температуры низкие, тепловой насос должен работать в режиме обогрева кондиционируемого помещения.

Перед тем, как устанавливать новый V4V, в каком положении должен находиться золотник: справа, слева или его положение не имеет значения?

В качестве подсказки приводим схему, выгравированную на корпусе электроклапана.

Решение упражнения №1

По окончании ремонта тепловой насос должен будет работать в режиме обогрева. Это значит, что внутренний теплообменник будет использоваться как конденсатор (см. рис. 52.22).

Изучение трубопроводов показывает нам, что при этом золотник V4V должен быть слева.
Следовательно, перед установкой нового клапана монтажник должен убедиться, что золотник на самом деле находится слева. Он может это сделать, посмотрев внутрь главного клапана через три нижних соединительных штуцера.
В случае необходимости, следует передвинуть золотник влево, либо постукивая левым торцом главного клапана о деревянную поверхность, либо слегка ударяя киянкой по левому торцу.
Рис. 52.22.
Только после этого можно будет устанавливать клапан V4V в контур {обращая внимание на предотвращение чрезмерного перегрева корпуса главного клапана при пайке).
Теперь рассмотрим обозначения на схеме, которая иногда наносится на поверхность электроклапана (см. рис. 52.23).
К сожалению, такие схемы не всегда имеются, хотя их наличие очень полезно для ремонта и обслуживания V4V.
Итак, золотник ремонтником перемещен влево, при этом лучше, чтобы в момент запуска напряжение на электроклапане отсутствовало. Такая предосторожность позволит избежать попытки обращения цикла в момент запуска компрессора,
когда перепад АР между Рн очень небольшой.

Нужно иметь в виду, что любая попытка обращения цикла при низком перепаде АР чревата опасностью заклинивания золотника в промежуточном положении. В нашем примере, чтобы исключить такую опасность, достаточно отсоединить обмотку электроклапана от сети при запуске теплового насоса. Это сделает полностью невозможным попытку обращения цикла при слабом перепаде АР (например, из-за неверного электрического монтажа)
Таким образом, перечисленные предосторожности должны позволить ремонтнику избежать возможных неполадок в работе агрегата V4V при его замене.

Изучим схему (см. рис. 52.1) одного из таких клапанов, состоящего из большого четырехходового главного клапана и малого трехходового управляющего клапана, смонтированного на корпусе главного клапана. В данный момент нас интересует главный четыреххо-довой клапан.
Вначале отметим, что из четырех штуцеров главного клапана три находятся рядом друг с другом (причем всасывающая магистраль компрессора всегда соединяется со средним из этих трех штуцеров), а четвертый штуцер находится с другой стороны клапана (к нему подсоединяется нагнетающая магистраль компрессора).
Заметим также, что в некоторых моделях V4V штуцер всасывания может быть смещен относительно центра клапана.
"Т\ Однако нагнетающая (поз. 1) и всасы-\3J вающая (поз. 2) магистрали компрес-^^ сора ВСЕГДА подключаются так, как указано на схеме рис 52.1.
Внутри главного клапана сообщение между различными каналами обеспечивается с помощью подвижного золотника (поз. 3), скользящего вместе с двумя поршнями (поз. 4). В каждом поршне просверлено небольшое отверстие (поз. 5) и, кроме того, каждый поршень снабжен иглой (поз. 6).
Наконец, в корпус главного клапана врезаны 3 капилляра (поз. 7) в местах, показанных на рис. 52.1, которые соединены с управляющим электроклапаном.
Рис. 52.1.
ности, если не изучить в совершенстве принцип работы клапана.
Каждый представленный нами элемент при работе V4V играет свою роль. То есть, если хотя бы один из этих элементов выйдет из строя, он может оказаться причиной очень трудно обнаруживаемой неисправ-
Рассмотрим теперь, как работает главный клапан...

Современные тенденции развития систем отопления все более склоняются к низкотемпературным напольным и радиаторным системам, при которых температура подачи теплоносителя значительно ниже температуры, выдаваемой котлом. Как же добиться гибкого регулирования температуры теплоносителя в условиях постоянно меняющейся уличной температуры?

Для низкотемпературных систем отопления и системы «теплый пол» нужно принимать такие технические решения, в которых в трубу подачи подмешивается охлажденная вода из обратки. Этот процесс называется качественным регулированием системы отопления , то есть регулирование, при котором расход теплоносителя остается прежним, а температура его меняется в нужную нам сторону и при этом мы никоим образом не вмешиваемся в работу котла и его циркуляционного насоса. Количественное регулирование системы отопления отличается от качественного тем, что при нем температура теплоносителя не меняется, а меняется его расход, то есть на трубе попросту устанавливается вентиль, закрытие которого увеличивает гидравлическое сопротивление и циркуляция притормаживается либо совсем останавливается, уменьшается соответственно и расход теплоносителя через отопительные приборы.

Качественное регулирование производят с помощью трехходового крана и байпаса или четырехходового крана, расположенных непосредственно перед кольцом низкотемпературного отопления (рис. 26).

Рис. 26. Принципиальная схема качественной регулировки температуры теплоносителя

Поворот рукояти трехходового крана в определенное положение открывает байпас, и циркуляционный насос втягивает охлажденную воду из обратки в подачу, где происходит смешивание с горячей водой подачи. Таким образом, температуру подачи теплоносителя можно отрегулировать до нужного значения. Трехходовой кран может работать очень гибко, он «умеет» перекрывать байпас или трубы подачи либо работать на смешивание обратной охлажденной воды с горячей водой подачи. Другими словами, если трехходовой кран закрывает байпас, то горячая вода подачи полностью попадает в кольцо отопления, если кран закрывает подачу, то кольцо отопления работает «на себя», теплоноситель будет крутиться в нем через байпас, пока не остынет, если кран открыт в промежуточном положении, то охлажденная вода через байпас попадает в кран и смешивается с водой подачи, далее в отопительный контур она попадает нужной нам температуры. Трехходовой кран, устанавливаемый для регулирования температуры теплоносителя, в данном случае, называют трехходовым смесителем (рис. 27). Температуру подачи горячей воды в систему отопления можно отрегулировать вручную по шкале на смесителе или с помощью датчика температуры и электрического сервопривода.

Рис. 27. Трехходовые смесители

Применение четырехходовых кранов позволяет обойтись без трубы байпаса, но в работе эти краны различаются: одни, например, с Х-образными заслонками, могут только закрывать и открывать подачу и обратку, но не умеют смешивать воду, другие, например, с роторными заслонками, воду смешивают. При применении кранов с Х-образными заслонками горячая вода попадает в кольцо отопления и кран закрывается, а насос гоняет теплоноситель по внутреннему кольцу, как только теплоноситель остывает, кран открывается и во внутреннее кольцо из котла попадает новая порция горячей воды, а охлажденная сбрасывается в обратку. Четырехходовой кран такой конструкции делит каждый контур на две части, его работа напоминает регулировку температуры теплоносителя включением-выключением циркуляционного насоса. Но в отличие от насосной регуляции (включения и выключения насоса), регулирование здесь происходит в более мягком режиме, так как насос не выключается и циркуляция теплоносителя не останавливается. Разумеется, что применение четырехходовых кранов с Х-образными заслонками возможно только в автоматическом режиме, поскольку ручной поворот крана при каждом остывании теплоносителя во внутреннем контуре просто невозможен.

Рис. 28. Четырехходовые роторные смесители

Четырехходовые смесители с роторными заслонками (и некоторыми другими) обеспечивают постоянный и одинаковый расход горячего и охлажденного теплоносителя и при этом позволяют устанавливать желаемую температуру теплоносителя как в ручном, так и в автоматическом режиме (рис. 28). Такая система отопления не нуждается в применении дифференциального байпаса, смеситель автоматически пропускает требуемое количество воды, иначе говоря, суммарное количество воды, поступающей в систему отопления, и воды, протекающей обратно, будет постоянным. Представленная система регулирования является одной из самых простых: в зависимости от положения клапана четырехходовой смеситель пропускает определенное количество воды, поступающей от котла в первичный контур; ровно столько же теплоносителя вытесняется в обратную магистраль.

Рис. 29. Пример решения узла подключения «теплых полов» и работы штокового смесителя

Обычно системы низкотемпературного отопления снабжаются автоматическими контроллерами, измеряющими температуру теплоносителя или температуру воздуха отапливаемого помещения, и отдающими команды на электрические сервоприводы, которые «крутят» вентили трех- или четырехходовых смесителей. Кроме смесителей «на поворотных заслонках» существует и другая управляющая арматура, основанная на штоковых (рис. 29) трех- и четырехходовых вентилях. Регулирование (закрытие и открытие каналов смесителя) происходит благодаря опусканию и подниманию штока с конусной заслонкой. Управляется смеситель датчиком, основанным на термическом расширении некоторых материалов, например, парафина. Капсула с парафином помещается на трубу системы отопления, парафин при нагревании от трубы расширяется и замыкает или размыкает контакты термопары, то есть капсула работает как выключатель, который передает импульс на сервопривод, передвигающий шток трех- или четырехходового смесителя. Потом температура в трубе отопления снижается, парафин уменьшается в объеме и размыкает контакты - шток смесителя занимает прежнее положение.



Рис. 30. Пример системы отопления, выполненной по классической схеме

Таким образом, система отопления с низкотемпературным контуром «теплых полов» и радиаторным высокотемпературным контуром может выглядеть следующим образом (рис. 30). Теплоноситель, нагреваясь в котле, поступает в коллектор горячей воды, откуда он распределятся по двум разводящим стоякам: радиаторного отопления и «теплых полов». Радиаторные стояки доставляют воду к отопительным приборам, где она охлаждается и поступает в коллектор охлажденной воды соединенный с трубой обратки котла. Теплоноситель побуждаемый циркуляционным насосом, постоянно циркулирует, в этом контуре и через котел. В отопительном контуре «теплых полов» происходит несколько иное движение теплоносителя. Циркуляционный насос закачивает теплоноситель из коллектора подачи не постоянно, а периодически, по мере того, как трехходовой смеситель открывает подачу. Все остальное время насос «крутит» по кольцу «теплых полов» собственную охлажденную воду. Здесь необходимо заметить, что при ручной регулировке трехходового смесителя насос будет постоянно подмешивать воду из коллектора подачи, а при регулировании смесителя автоматикой возможны два варианта работы: с полным отключением «теплых полов» от котла и с подмешиванием горячей воды. Дело в том, что производителями трехходовых смесителей выпускаются два варианта этих вентилей, в большинстве случаев, трехходовые смесители настраиваются таким образом, что ручное закрытие вентиля, показывающее на шкале прибора «подача горячей воды закрыта», на самом деле горячую воду полностью не закрывает, а оставляет чуть-чуть приоткрытой. Это так называемая защита «от дурака». Например, смонтировав систему радиаторного отопления с ошибкой, пользователь полностью перекрывает подачу в систему отопления «теплых полов», а котел в это время работает и нагревает воду, выталкивая ее в систему. И куда ей течь, если трехходовой вентиль закрыт? В системе создается избыточное давление и перегрев теплоносителя - возможен разрыв теплообменника котла или трубопровода. Трехходовой смеситель, имеющий маленькое отверстие, при, казалось бы, полном закрытии подачи, позволяет не останавливать циркуляцию и пропускать теплоноситель по низкотемпературному контуру отопления.

Схемы смесительных узлов (так выглядит узел теплого пола в сборе) :

Смесительный узел для теплого пола Valtec для 1 контура (до 20 м2.)

Коллектор теплого пола Valtec от 2 до 4 контуров (20-60 м2.)

Наш интернет-магазин предлагает купить термостатические смесительные клапаны и сервомоторы для организации систем отопления и водоснабжения. Являясь сертифицированным дистрибьютором всемирно известной торговой марки Valtec, мы поставляем надёжную инженерную сантехнику, востребованную в частном и массовом строительстве, при проведении реконструкции зданий и помещений различного назначения.

Регулирующие смесительные клапаны являются составными частями современных систем отопления, горячего и холодного водоснабжения. Они предназначены для того, чтобы холодный и теплый водопотоки смешивались, подавая на выходе жидкость требуемой температуры. Эти клапаны (вентили), как трехходовые, так и четырехходовые, востребованы при организации водоснабжения с циркуляцией горячей жидкости либо без её циркуляции в системах классического радиаторного, напольного, панельного и потолочного отопления, служат ограничителями обратки, а также обеспечивают обмен между поступающей и обратной линиями. Корпус вентиля может быть стальным, латунным, чугунным. В линейке продукции Valtec представлены смесительные клапаны, корпуса и регулирующие детали которых сделаны из латуни - на этом металле не образуются коррозионные наслоения. Уплотнение штока происходит за счёт пары колец, изготовленных из каучука-синтетика Epdm Perox. Вентили полностью ремонтопригодны, допускается замена верхнего кольца без необходимости разбирать деталь полностью.

Производя смешивание теплоносителя из двух потоков с различной температурой (в водоснабжении это горячая и холодная вода, в отоплении - подающаяся вода и обратка), регулирующие клапаны Valtec создают поток с заданным уровнем подогрева.

В нашем интернет-магазине можно купить трехходовые и четырехходовые смесительные вентили Valtec. Трехходовая деталь понадобится при монтаже системы «теплый пол», а также для подогрева теплой жидкости от высокотемпературного теплоносителя в отопительной конструкции. Четырехходовые вариации нужны для того, чтобы создать сразу два регулирующихся контура, каждый - с персональными параметрами температуры. Например, это необходимо для того, чтобы защитить котлы от холодной температуры в обратке. Управлять трех- и четырехходовыми смесительными клапанами Valtec можно как в ручном режиме, так и посредством серводвигателя. Последний вы также можете заказать на нашем сайте. Серводвигатель управляет вентилем при помощи контроллера либо термостата. Компания поставляет модели с аналоговым и импульсным управлением, с возможностью переключения на ручную регулировку.

Термин «термостатический» в описании смесительных клапанов означает, что они поддерживают оптимальный уровень температуры в системах ГВС и защищают от возможности обжечься.

Спектр товарных предложений арматуры бренда Valtec содержит регулирующие детали для всевозможных применений, произведенные из высококачественных, надежных материалов. Клапаны (вентили) для отопительных систем могут эксплуатироваться при температуре теплоносителя, достигающей 120°С, и при уровне давления не более 10 Бар. Изделия служат без необходимости замены или ремонта в течение 20-25 лет (конкретный срок эксплуатации зависит от модели).

В широком ассортименте запорной арматуры, используемой для систем отопления, присутствует элемент, применяемый достаточно редко. Его форма напоминает тройник, хотя функции, которые он исполняет, совершенно иные. Мы говорим про трехходовой клапан, принцип работы которого будет рассмотрен в данной статье.

Принцип работы трехходового клапана

Что собой представляет данное приспособление, для чего оно вообще нужно?

Как это работает

Трехходовой клапан монтируется на тех участках магистралей, где требуется разделить поток циркулирующей жидкости на 2 контура:

  • с переменным гидрорежимом;
  • с постоянным.

В большинстве случаев постоянный поток требуется тем, для кого подается жидкость высокого качества и в обозначенных объемах. Его регулируют в соответствии как раз с показателями качества. Что же касается переменного потока, то он применяется для объектов, где показатели качества не являются основными. Там большое значение имеет коэффициент количества. Проще говоря, подача теплоносителя там осуществляется по необходимому количеству.

Обратите внимание! К запорной арматуре относится и аналог описываемого в статье прибора – двухходовой клапан. Чем он отличается? Дело в том, что трехходовой вариант работает по совершенно другому принципу. Шток, входящий в его конструкцию, неспособен перекрывать поток жидкости, который имеет постоянные гидравлические показатели.

Шток все время открыт, он настраивается на тот или иной объем жидкости. Следовательно, пользователи смогут получить нужный им объем как в плане количества, так и в плане качества. В целом, данный прибор неспособен прекратить подачу жидкости на сеть, в которой гидравлический поток постоянен. При этом поток переменного типа он вполне может и перекрыть, благодаря чему, собственно, и возникает возможность регулировки расхода/давления.

И если соединить пару устройств двухходового типа, то можно получить один, но трехходовой. Но нужно, чтобы оба работали на реверсе, другими словами, при закрытии одного клапана должен открываться следующий.

Видео – Трехходовой клапан принцип работы

Классификация клапанов

Без длительных введений отметим, что устройство может быть двух типов по принципу функционирования. Оно может быть:

  • разделительным;
  • смесительным.

Особенности действия каждого типа ясны уже из их названия. Смесительное устройство состоит из двух выходов и входа. Другими словами, оно необходимо для смешивания потоков жидкости, что может потребоваться в целях снижения ее температуры. К слову, это наиболее оптимальный вариант для того, чтобы задавать нужный режим в «теплом полу».

Сама процедура регулировки температурного режима предельно проста. Нужно лишь знать о текущих показателях температуры входящих потоков жидкости, с точностью просчитать требуемые пропорции каждого из них так, чтобы на выходе получить нужные показатели. Кстати, данное устройство при условии грамотного монтажа и регулировки способно функционировать и на разделение потока.

А вот разделительный клапан разделяет один поток надвое, следовательно, он оснащен одним входом и двумя выходами. Данное устройство применяется преимущественно для того, чтобы разделять поток горячей воды в системах ГВС. Хотя достаточно часто он встречается и в обвязке воздухонагревателей.

Внешне оба варианта практически идентичны. Но если ознакомиться с их чертежом в разрезе, то их основное отличие видно сразу. Шток, который установлен в устройстве смесительного типа, имеет один шаровой кран. Он располагается по центру и перекрывает основной проход.

Что же касается разделительных приборов, то в них шток имеет два таких клапана, которые устанавливаются на выходах. Они функционируют по следующему принципу: один из них придавливается к седлу, закрывая проход, а другой параллельно с этим открывает проход №2.

По методу управления современные модели могут быть:

  • электрическими;
  • ручными.

В большинстве случаев используется ручной прибор, который внешне напоминает обыкновенный шаровой кран, но оснащен тремя выходными патрубками. А вот электрические модели, имеющие автоматическое управление, применяются преимущественно в частных домах, а именно для того, чтобы распределять тепло. Например, пользователь может настроить температурный режим по комнатам, а рабочая жидкость будет поступать в соответствии с удаленностью комнаты от отопительного прибора. Как вариант – можно совместить его с «теплым полом».

Видео – Прибор в бойлерной группе

Трехходовые клапаны, равно как другие приборы, определяются в соответствии с давлением в системе и диаметром подвода. Все это регламентируется ГОСТом. И если требования последнего не будут соблюдаться, это будет расценено как грубое нарушение, в особенности, если речь идет о показателе давления в магистрали.

Сферы применения

Трехходовой клапан, принцип работы которого был рассмотрен выше, обладает достаточно широкой сферой применения. Так, такие его разновидности, как электромагнитное устройство или же прибор с термоголовкой, часто встречаются в современных магистралях, где требуется корректировка пропорций при смешивании двух разделенных потоков жидкости, но без снижения мощности или объема.

Что же касается использования в быту, то самым популярным здесь считается термостатический смесительный прибор, с помощью которого, как уже отмечалось выше, можно регулировать температуру рабочей жидкости. Эта жидкость может подаваться как в трубопровод «теплого пола», так и в отопительные радиаторы. А если клапан еще и имеет автоматическое управление, то контролировать температуру в жилище можно будет без каких-либо проблем!

Обратите внимание! Применение трехходового клапана в отопительной системе в целях уравновешивания перепадов температуры крайне выгодно не только в плане комфорта и удобства, но и в плане экономии средств.

Дело в том, что путем регулирования температуры жидкости на «обратке» отопительного прибора можно значительно снизить объемы потребляемого топлива, да и на эффективности самой системы это отразится позитивно. В некоторых системах клапан попросту необходим. Например, в системе «теплого пола» данное устройство предотвращает перегрев напольного покрытия выше заданного уровня комфортности, тем самым избавляя пользователей от неприятных ощущений.

Подобного рода регулирующие устройства также используются в системах водоподачи в целях получения перманентного потока с требуемой температурой. Простейшим примером является обыкновенный смеситель, при котором можно сделать воду горячее/прохладнее открытием/закрытием холодного крана.

Регулировка потоков рабочей жидкости. На что обращать внимание при покупке?

Ручная регулировка производится посредством обычного шарового крана. Визуально он очень похож на простой вентиль, но имеет дополнительный выход. Арматура подобного рода применяется для принудительного ручного управления.

Что же касается автоматической регулировки, то здесь применяется специальный трехходовой клапан, оснащенный электромеханическим прибором для изменения положения штока. Его следует подключать к термостату, дабы иметь возможность регулировки температурного режима в помещении.

Помните, что при покупке клапана необходимо в обязательном порядке принимать во внимание технические параметры прибора, к которым относится следующие.

  • Диаметр подсоединения к отопительной магистрали. Зачастую данный показатель варьируется в пределах от 2 до 4 сантиметров, хотя многое зависит от особенностей самой системы. Если прибор подходящего диаметра найти не удалось, то придется воспользоваться специальными переходниками.
  • Возможность установки сервопривода на трехходовой клапан, принцип работы рассмотрен в начале статьи. Благодаря этому прибор сможет работать на автомате. Данный момент очень важен, если прибор подбирается для эксплуатации в «теплых полах» водяного типа.
  • Наконец, это пропускная способность трубопровода. Под этим понятием подразумевается объем жидкости, который сможет пройти через него за определенное время.

Популярные производители

На отечественном рынке присутствует множество изготовителей трехходовых клапанов. Выбор той или иной модели зависит, прежде всего, от:

  • вида механизма (а он, напомним, может быть механическим либо электрическим);
  • сферы использования (ГВС, ХВС, «теплый пол», отопление).

Самым популярным прибором по праву считается Esbe – шведский клапан от компании, существующей уже более сотни лет. Это надежный, качественный и долговечный продукт, отлично зарекомендовавший себя во многих сферах. Сочетание европейского качества и современных технологий.

Другой популярной моделью является американский Honeywell – истинное детище высоких технологий. Простой управление, удобство и комфорт, компактность и надежность – вот отличительные особенности этих клапанов.

Наконец, относительно «юными», но перспективными приборами являются клапаны линейки Valtec – результат совместного сотрудничества инженеров Италии и России. Все изделия качественны, продаются с гарантийным сроком в семь лет. Отличаются тем, что имеют вполне доступную стоимость.

Как установить смешивающий клапан своими руками

Данная схема установки используется преимущественно в котельных тех отопительных систем, которые подсоединены к гидроразделителю или же к безнапорному коллектору. А насос, расположенный в контуре №2, обеспечивает требуемую циркуляцию рабочей жидкости.

Обратите внимание! Если трехходовой клапан будет подключаться напрямую к источнику тепловой энергии на байпасе, подсоединенному к порту В, то потребуется и монтаж клапана с гидросопротивлением, равным аналогичному сопротивлению этого источника.

Если этого не сделать, то расход рабочей жидкости на отрезке А-В будет колебаться в соответствии с движением штока. Отметим также, что данная схема монтажа предусматривает возможное прекращение циркуляции жидкости через источник, если установка была произведена без циркуляционного насоса либо же гидроразделителя в основном контуре.

Нежелательно подключать клапан к теплосетям или напорному коллектору в отсутствие приборов, которые дросселируют чрезмерный напор. Иначе расход жидкости на участке А-В будет колебаться, причем существенно.

В случае если перегревание обрата допускается, от чрезмерного напора избавляются посредством перемычки, установленной параллельно к подмесу клапана в контуре.

Как установить разделяющий клапан своими руками

Обеспечение количественной регулировки за счет изменения затрат жидкости – вот основная функция, которую выполняет такой трехходовой клапан. Принцип работы его предельно прост и был рассмотрен выше. Он применяется там, где возможен перепуск жидкости на «обратку», а прекращение циркуляции, напротив, не допускается.

Обратите внимание! Эта схема подключения обрела широкую популярность в узлах водо- и воздухонагрева, которые подключены от индивидуальных котелен.

В целях увязки гидроконтуров необходимо, чтобы потери напора потребителя были равны потерям на клапане-балансире в байпасе. Приведенная здесь схема предназначается для установки на те трубопроводы, в которых имеет место чрезмерный напор. Жидкость в данном случае перемещается за счет сильного напора, образованного с помощью циркуляционного насоса.

Видео – Трехходовой клапан и принцип его работы



Случайные статьи

Вверх