Магнитная индукция. Определение и описание явления. Что такое индукция магнитного поля

Магнитная индукция – векторная величина, характеризующая силу и направление магнитного поля в точке пространства. Видели, наверное, это на картинках на уроках физики: завихрения в форме планетарных меридианов, сходящиеся к полюсам красно-синей подковы. Первые изображения магнитного поля пытались строить уже в 17 веке. По-видимому, пользуясь металлическими опилками. Величина магнитной индукции определена параметрами среды.

Силовые линии магнитных полей

Магнитное поле и магнетизм

Магнитная индукция гораздо точнее описывает поле, нежели прочие методы. Запутанные термины мешают пониманию. Индукцию путают с напряженностью. Оба термина векторные, описывают поле. Напряженность не зависит от характеристик среды, отличаясь этим. Магнетизм известен издревле. Ученые бессильны точно назвать дату начала применения поля Земли для навигации моряками, историки выявили следующие любопытные факты:

  1. Ольмеки (древнее индейское племя) применяли намагниченные иглы за 1500 лет до н.э. Отсутствуют точные свидетельства, касающиеся назначения конструкции. Полагают, пользуясь магнетизмом древний народ определял направление.
  2. В Китае первые письменные упоминания касаются II века до н.э. Магнитные иглы использовались для предсказаний по характеру рельефа земной поверхности, в целях обустройства жилищ по методикам Фэн-Шуй.

Исторические факты заставляют называть первой современной цивилизацией, начавшей практиковать навигацию с ориентацией магнитным полем Земли, Китай. X – XI век нашей эры. Конструкция тщательно замалчивается письменными источниками. Рискнем предположить, компас повторял наработки прорицателей:

  • Конец металлической иглы намагничивается железняком.
  • Изделие подвешивается на шелковой нити, фиксатором точки крепления выступает воск.

Приспособления, изготовленные таким образом, смотрят то на юг, то на север. В зависимости от условий намагничивания иглы. Европы узнала компас несколькими веками позже. Первым источником, описывающим конструкцию подобных приборов, наравне с астролябией, является простое письмо (1269 год н.э.), набросанное Петрусом «Перегринусом» (Пилигримом) некоему землевладельцу в дни осады итальянской Лучеры. По-видимому, прозвище автора указывает, что автор хорошо знаком с темой. Астролябия помогала определить местное время, в сочетании с компасом становилось возможным произвести вычислении географических координат. Оба прибора несказанно упрощали навигацию (разумеется, приоритет отдается морским путешествиям).

Магнитное поле Земли издавна использовалось путешественниками для ориентации на поверхности планеты. Наравне с экзотическими приспособлениями: кристаллы, расщепляющие солнечный свет и позволяющие таким образом определить местоположение главной звезды на небосводе. Астролябия добавила стереографическую проекцию (сферы на плоскость) всех тел. Позволяя производить вычисления в темное время суток. Достаточно измерить алидадой (стрелка оборотной стороны астролябии) возвышение звезды над горизонтом.

Существовал минус: для каждой широты следовало изготовить карту на тимпане (вращающаяся вкладка корпуса астролябии). Мореход, применяя нужный диск, решал задачу на любых широтах. Разумеется, должен заранее позаботиться обзавестись нужными картами тимпанов. Иначе измерения становились неточными, некорректными. Видите, сколько пришлось пережить трудностей путешественникам, вернемся к магнитному полю Земли. Явление описывает индукция. Ходили слухи: Тесла использовал знания о величине магнитного поля Земли, выбирая параметры электрических приборов. Впрочем, попахивает фантазий, пришельцами со звезд, Второй мировой войной.

Индукция у магнитного поля Земли присутствует, каждый желающий найдет электронную карту, возникни потребность. Магнитные полюса не совпадают с истинными. Карта магнитной индукции будет иметь меридианы, отличающиеся от пространственных. На средних широтах не мешает мореплавателям ориентироваться, пользуясь компасом.

Появление понятия магнитной индукции

На заре эпохи развития электричества люди стали исследовать сопутствующие явления. Так, Ханс Эрстед в 1819 году обнаружил: проводник с током создает вокруг круговое магнитное поле, Андре-Мари Ампер показал, что если направление движения зарядов совпадает, соседствующие проводники притягивают друг друга. Конец спорам положило создание закона Био-Савара (отечественные источники добавляют Лапласа), описывающего величину, направление магнитной индукции в точке пространства. Источники допускают оговорку касательно того, что исследования велись постоянного тока.

Взаимосвязь индукции и напряженности магнитного поля

Интегрирование (см. рисунок) идет по контуру с током. В формуле r подразумевает элементарную среднюю точку текущего отрезка, r0 – место пространства, для которого вычисляется магнитная индукция. Обратите внимание, в знаменателе дроби за интегралом перемножаются два вектора. Результатом выходит величина, направление которой определим по правилу буравчика (левой или правой руки). Интегрирование ведется по элементу контура dr, r – средняя точка малого отреза полной длины. Идентичные разности в числителе и знаменателе сократим, остается вверху единичный вектор, задающий направление результата.

Формула показывает, как найти поле для контуров любой формы, проводя интегрирование по точкам. Современные численные методы лежат в основе действия компьютерных приложений (наподобие Maxwell 3D) по решению соответствующей задачи. Уравнение согласуется с законами Гаусса (магнитной индукции) и Ампера (циркуляции магнитного поля). Георг Ом использовал знания о компасе, выводя известную зависимость. Форму линий поля получим при помощи магнитных стрелок и силы оставления направления неизменным (см. заметку про закон Ома для участка цепи). Это будет картина магнитной индукции в пространстве, экспериментально подтвердившая закон Био-Савара-Лапласа.

Позволило сделанное Амперу в 1825 году показать: электрический ток в некоторых случаях является аналогом постоянного магнита. Появилась новая модель, которая лучше согласовывалась с действительностью, нежели схема диполей Пуассона. Подобная абстракция объясняла отсутствие в природе изолированных магнитных полюсов. По современным представлениям, кусок стали намагничивается, оттого что диполи элементарных частиц и молекул приобретают упорядоченность. На этом основаны контуры размагничивания сердечников трансформаторов, которые перед выключением питания вызывают затухающие колебания тока. В результате эффект упорядоченности размывается, выраженные свойства пропадают.


Наличие магнитного момента объясняется существованием спинов (понятие введено в 20-х годах XX века) – угловой момент частиц микромира. Реальные, не абстрактные вещи, существование подтверждено экспериментально (Штерн-Герлах). Спин является векторной величиной, одинаковой для всех частиц одного типа (например, электронов), описывается специальным квантовым числом. В СИ единицей измерений служит Дж с, как и для другого углового момента (постоянной Планка). Иногда применяется упрощенная безразмерная запись. Постоянная Планка опускается. Указывается просто спиновое квантовое число (s, ms).

Благодаря наличию спина, элементарная частица обзаводится магнитным моментом, вычисляемым по формуле: в числителе произведение спинового углового момента на заряд частицы и g-фактор (постоянные, приводимые в различных справочниках для тех или иных элементарных частиц); в знаменателе – удвоенная масса элементарной частицы. Как видите, поддается учету, максимальную намагниченность материала в заданных условиях можно заранее рассчитать. Настоящим триумфом квантовой электродинамики явилось предсказание g-факторов для некоторых элементарных частиц.

Открытие Майклом Фарадеем в 1831 году генерации переменным магнитным полем кругового электрического показало: два явления тесно связаны, что явилось предпосылкой созданию (четырех) уравнений Максвелла, частным случаем которых являются большинство формул в этой области, считая упомянутые выше. Исследования шли своим чередом, но несколько разными путями. Интеграцию произвел лорд Кельвин, известный как Вильям Томпсон, который показал наличие H (напряженность) и B магнитной индукции, первая характеризует модель Пуассона, вторая – Ампера.

B и H магнитная индукция

Магнитная индукция B измеряется теслами (СИ), Тл эквивалентно Н с / Кл м. Н – ньютон, единица измерения силы; с – секунда времени; Кл – кулон, электрический заряд; м – метр расстояния. СГС для тех же целей применяет гауссы (Гс = √г / с √см), г – грамм массы; с – секунда времени; см – сантиметр расстояния. H магнитная индукция измеряется амперами на метр (СИ) или эрстедах (СГС). Русскоязычная литература именует Н напряженностью поля.

Единица тесла введена в 1960 году Международной конференцией по весам и мерам в честь скончавшегося Николы Тесла. Фактически с начала существования СИ. Как ученые жили до этого? К 1948 году зародилась идея внедрения СИ, уже существовала СГС. Истоки последней заложены в 1832 году Карлом Фридрихом Гауссом, искавшим единый базис для отраслей физики, дабы проще было связать разнородные законы. Ученый задался тремся основными единицами: миллиметр, миллиграмм, секунда.

Гаусс скончался вскоре после введения понятия магнитная индукция и деления величины на В и Н, однако в 1874 году Джеймс Максвелл, лорд Кельвин дополнили перечень новыми величинами. Магнитную индукцию назвали в честь основателя, одновременно систему нарекли СГС (до этого именовалась гауссовой). Что касается СИ, теслу можно представить через базовые или производные единицы разным образом. Вебер, отнесенный на квадратный метр.


Отталкивание катушек с током

В вакууме два вида индукции (Н и В) связаны через постоянные. Чтобы отличить одно от другого, Н именуется вектором напряженности магнитного поля. Понятно, что смыслом не сильно отличается от В. В формуле:

  1. μ – магнитная проницаемость среды.
  2. μ0 – магнитная постоянная (проницаемость вакуума). В системе СГС равна 1, в вакууме В и Н одинаковы. В СИ составляет 1,257 микроньютона на квадратный ампер.

Постоянные введены специально, чтобы связать Н и В - характеристики магнитного поля. Кстати, существует множество версий, почему лорд Кельвин назвал векторы таким образом (литеры Н и В). Интересующимся рекомендуем ознакомиться с понятиями: относительная магнитная проницаемость (отношение абсолютной μ к постоянной μ0), магнитная восприимчивость (относительная магнитная проницаемость, увеличенная на 1). Поможет лучше понять формулы литературных источников, где зависимость между В и Н иного вида приведенного обзором.

Можете найти множество законов, формул, касающихся магнитной индукции, показывающих, сколь важное место занимает параметр в теории. Авторам неизвестно, пользовался ли подобными величинами Никола Тесла при разработке многофазного асинхронного двигателя, но неспроста же величине дали имя великого ученого!

Все магниты разделяются между собой по силе своего воздействия. Таким образом, существует определенная величина, которая характеризует степень проявления силы того или иного магнита. Если быть более точными, то данная сила создается не самими магнитами, а их магнитными полями. Само магнитное поле зависит от векторной величины, которая известна, как индукция магнитного поля или просто магнитная индукция.

Формула

Для определения величины электромагнитной индукции используется формула B=F/(I*l), где магнитная индукция В, представляющая собой модуль вектора, определяется, как отношение модуля силы F, воздействующей на проводник с током, расположенным перпендикулярно с магнитными линиями, к значению силы тока I, имеющейся в проводнике и длине l самого проводника.

Зависимость магнитной индукции

На абсолютно не влияют, ни сила тока, ни длина проводника. Она находится в прямой зависимости и связи, только с магнитным полем. Таким образом, при уменьшении силы тока в проводнике, без изменения каких-либо других показателей, происходит уменьшение не индукции, прямо пропорционально связанной с силой тока, а той силы, с которой магнитное поле воздействует на проводник. При этом, значение самой магнитной индукции остается постоянным. Благодаря этим качествам, электромагнитная индукция выступает в роли количественной характеристики магнитного поля.

Измерение магнитной индукции производится в теслах, по формуле: 1 Тл=1 Н/(А*м). Физическую зависимость этой величины от различных факторов, можно определить в ходе проведения несложного эксперимента. Необходимо взять весы, где на одной стороне прикрепляется проводник, а на другой стороне расположены гири. Проводник находится в постоянном электромагнитном поле, при этом, его масса и вес гирь имеют одинаковое значение.


После уравновешивания весов, по проводнику пропускается электрический ток. Вокруг него происходит образование магнитного поля, определяемое в соответствии с . В результате, наблюдается взаимодействие полей постоянного магнита и самого проводника. При этом, равновесие весов будет нарушено. Из-за протекания тока, сторона весов с проводником начинает опускаться. Для того, чтобы вычислить силу воздействия поля на этот проводник, нужно уравновесить его с помощью гирь. Сила их тяжести рассчитывается по специальной формуле, и будет равняться силе магнитного поля, воздействующей на проводник с током. Соотношение этой силы с длиной проводника и силой тока является постоянной величиной. Данная количественная характеристика находится в зависимости только от поля и представляет собой ни что иное, как модуль вектора магнитной индукции.

Линии магнитной индукции

Сама индукция магнитного поля характеризуется определенным направлением, представляющим собой линии, отображаемые графически. Эти линии, также получили название магнитных линий, или линий магнитных полей. Так же, как и магнитная индукция, ее линии имеют собственное определение. Они представляют собой линии, к которым проведены касательные во всех точках поля. Эти касательные и вектор магнитной индукции совпадают между собой.


Однородное магнитное поле отличается параллельными линиями магнитной индукции, совпадающими с направлением вектора во всех точках.

Если же является неоднородным, произойдет изменение вектора электромагнитной индукции в каждой пространственной точке, расположенной вокруг проводника. Касательные, проведенные к этому вектору, приведут к созданию концентрических окружностей вокруг проводника. Таким образом, в данном случае, линии индукции будут выглядеть в виде расширяющихся окружностей.

Индукция магнитного поля – величина, определяемая параметрами среды, показывающая величину силы, с которой при поднесении объекта поле действует на стрелку компаса, проводник с током или ферромагнитные материалы. История развития тематики подробно описана разделом (слова-синонимы), здесь целиком сосредоточимся на практической части, терминах.

Магнитное поле и характеристики

Эрстед обнаружил отклонение стрелки компаса проводом с электрическим током, магнетизм тогда считался явлением независимым. Проявляли свойства твердые тела. Гильберт писал: магнетизму в сравнении со слабым и непостоянным электричеством присущи сила, нерушимость. Поле свободно проходит объекты. Следовательно, нужно было субстанцию охарактеризовать. Потребовалось время воссоздать картину. Сегодня, как это указывается разделом Магнитная индукция, господствуют две модели:

  1. Пуассона.
  2. Ампера.

Первоначально исследована сила взаимодействия двух проводников с током. Как только Ампер продемонстрировал открытие Эрстеда собранию научного общества, исследователи начали рыть. В ходе обсуждений Лаплас предположил: действие явления можно усилить, изогнув проводник. Так появились (в 1820 году) катушка индуктивности в мультипликаторе (гальванометре) Швейггера, прообраз электромагнита в опытах Араго с намагничиванием иглы, обвитой проволокой, разрядом лейденской банки. Знаменательным стало открытие закона Био-Савара (см. рис.). Связывает характеристику магнитного поля провода с током и некоторые другие величины.

Левая часть равенства содержит элемент индукции. Малая толика общего поля, создаваемая элементарным (небольшим) отрезком проводника dl. Величину определяют сила тока, расстояние до рассматриваемой точки, угол меж векторами l и В. Согласитесь, звучат термины туманно, необходимо рассмотреть ключевые понятия. В современной физике явления магнитного поля объясняется наглядными опытами с активным участием электроскопа. Физический прибор, изобретенный задолго до описываемых событий (середина XVIII века), позволяющий определить наличие на объекте статического заряда.

Первый электроскоп состоял из древесного шарика, подвешенного на дуге, напоминавшей поставленный кверху ногами рыболовный крючок. В результате нить свободно ходила в сторону. Шарик натирали при помощи шерсти, образовывался заряд, взаимодействующий с другими. Процесс описывает закон Кулона. Вернемся к демонстрации магнитного поля современной физикой. Учебник пользуется простыми примерами:

  1. Заряженный шар электроскопа подносят к проводнику с током. Наблюдается некое взаимодействие.
  2. Направление тока меняют: картина остается прежнее.
  3. Убирают ток вовсе – взаимодействие налицо.

Делают вывод: провод, несущий ток, с неподвижным шариком электроскопа не взаимодействует сам по себе. Происходит электризация влиянием. Провод приобретает статический заряд от шарика, наблюдается взаимодействие. Следовательно, электрическое поле сосредоточено внутри проводника, не выходит за пределы. Согласно аксиоме:

Магнитными называют силы взаимодействия проводника под током с другим проводником, стрелкой компаса, некоторыми материалами и предметами.

Линии напряженности магнитного поля

Магнитное поле не влияет на неподвижный заряд, действует на движущееся электричество. Когда Био экспериментально, Савар позже математически сформулировали закон, понадобились модели, описывающие взаимодействие нового явления с объектами материального мира. Следует четко понимать, хотя закон Био-Савара содержит величину магнитной индукции, на момент 1820 года попросту отсутствовала в научной сфере. Некая мера поля, что именно представляла, никто в точности сказать не мог. Гауссова СГС появилась в 1832 году, лишена многих физических величин.

Трактат 1600 года Гильберта высказал предположение о структуре линий напряженности. Для выяснения обстоятельств активно использовал магнитную стрелку, создал шар руды, доказал подобие поля объекта Земному. По характеру взаимодействия выдвинул идею: один полюс испускает некую субстанцию, другой - поглощает. Довольствуясь доводами, Рене Декарт в 1644 году создал одну из первых картин магнитного поля, использовав мелкие металлические опилки. Опытом не брезгают сегодняшние учебники физики. Линии напряженности магнитного поля являются плавными, замыкаются на полюсах, вектор индукции направлен касательно в каждой точке.

Сообразно закону Био-Савара, имеющимся знаниям Пуассон в 1824 году создает первую модель поля. Оперирует с диполями, отстраняется от среды распространения явления. Ампер идет иным путем, представляя источники магнитного поля, элементарными циркулирующими зарядами. Проводя опыты, замечает: сила взаимодействия зависит от среды, вносит таким образом лепту. Правы оказались оба.


Магнитное поле планеты Земля

Существование магнитного поля независимо от среды, сила действия на объекты в некоторых материалах изменяется. Для описания количественной меры изменения ввели единицу относительной магнитной проницаемости. Показывает отличие силы взаимодействия в сравнении с процессом, идущим в вакууме. Согласно такому подходу, материалы формируют три группы:

  1. Парамагнетики немного усиливают напряженность Н, индукция магнитного поля немного больше, нежели в вакууме. Вещества теряют приобретенные в результате взаимодействия свойства так скоро, как пропадает источник изменений.
  2. Диамагнетики ослабляют действие поля. Напряженность Н выше индукции В. Класс веществ включает: поваренную соль, нафталин, висмут. Поле ослабляется, магнитная восприимчивость отрицательная.
  3. Ферромагнетики многократно усиливают напряженность, индукция намного превышает H. По этой причине идут на изготовление сердечников трансформаторов.

Теперь поясним: напряженность поля H характеризует свойства источника магнетизма, существует в любой среде. Индукция показывает способность явления индуцировать в проводниках ЭДС. Откуда произошло название. Хотя на практике индукция играет первостепенную роль, рассмотрение случаев с одновременным использованием разных сред удобно вести с позиций напряженности поля. Значение домножается величиной магнитной проницаемости среды.

Кстати, Майкл Фарадей, не зная фактов, выбрал для удачного опыта с тороидальным трансформатором ферромагнетик (мягкая сталь). Благодаря этому удачно удалось зафиксировать явление индукции. Оно имеет место быть в воздухе, но не так заметно. Ферромагнетик умножает многократно способность поля индуцировать отклик в виде ЭДС вторичной обмотки трансформатора. Коэффициент проницаемости некоторых материалов составляет тысячи единиц.


На чертежах условились линии магнитного поля наносить тем плотнее, чем выше индукция. На единицу площади (например, квадратный сантиметр) приходится столько, каково значение физической величины в Тл. Помогает визуально оценить плотность поля. Количество линий, охваченных площадью фигуры, отражает величину работы по перемещению в пределах нее электрического заряда. Тезис отражен законом Фарадея (см. рис.), где фигурирует величина плотности магнитной индукции, измеряемой веберами.

Законы и феномены, связанные с индукцией магнитного поля

Магнитная индукция и индукция магнитного поля выступают словами-синонимами. Параметр характеризует свойства источника и атрибуты среды. Следовательно, пора рассмотреть законы, связанные с явлением. Первое приходящее на ум – полистать учебник физики, верим, что читатели смогут сделать индивидуально. Предлагаем рассмотреть феномен, прошедший незамеченным Википедией и некоторыми учебниками физики, большинством.

Магнитные полюса Земли прямо противоположны истинным. Дело не в том, что магнитные полюса отклонены от географических. Нет! Прямо противоположны по местоположению полюсам, с которыми оперирует физика. Поэтому какой учебник ни возьми, везде стрелка компаса указывает на юг. Хотя авторы стараются исключить картинки, по которым можно было бы однозначно установить. Посмотрим две из них (фото Курс физики Жданова Л.С. и Мараджаняна В.А.):

  1. На первой видно: стрелка компаса отслеживает северным полюсом направление поля.
  2. Вторая демонстрирует правило левой руки, одновременно замечаем: поле направлено с севера на юг.


Магнитные полюсы глазами физиков

Отыскивается иллюстрация, отчетливо показывающая: на юг смотрит северный конец ферромагнетика. Истинный северный полюс находится не в Арктике, как привыкли думать, на просторах Антарктиды. Очередное противоречие физики, второе заключается в предположении, что ток образуют положительные заряды. Хотелось бы сегодня сделать еще один доклад.

Магнитные полюсы Земли периодически меняются местами!

Да, они это делают, последняя смена была порядка 780000 лет назад (сведения получены на основании анализа горных пород). Хотя иногда процесс происходил чаще. В августе 1999 года началась Эпоха Водолея, вместе с ней грядет очередная смена полюсов. За век вплоть до этой даты магнитный северный полюс смещался ежегодно на 10 км, к началу 2000-х – на целых 50. Цифра постоянно растет. Среди ученых кругов имеются паникеры, утверждающие: переполюсовка каждый раз вызывает крах биосферы: якобы, так погибли динозавры.

Специалисты дают протекающему процессу 40 - 100 лет, потом… физические представления станут верными: стрелка компаса будет смотреть как раз в нужном направлении. Научная интуиция эпохи технической революции? Нельзя сказать точно, но морякам, пилотам пора откорректировать магнитное склонение (разница между направлением на географический и магнитный полюсы). Утешает одно: большинство объектов ориентируется на показания приборов GPS (спутниковая навигация с задействованием земных транслирующих станций).

Изменениями Солнца провоцируются магнитные бури. Природный катаклизм, когда стрелка компаса начинает вести себя непредсказуемо. У поля имеются 11 и 100-летний циклы, мало влияют на погоду, потому незаметны большей части человечества. Скептикам ответим: магнитное поле выступает единственной защитой человечества против действия космического излучения, всерьез пора подумать о сохранности планеты. Особенно сильно пострадает озоновый слой, вслед за ним – микроскопическое населения океана. Фактически от приспособленности водной жизни к изменениям зависит дальнейшее будущее планеты.

Первый 3-D маппинг поля выполнил спутник Magsat в 1980 году, затем после долгого перерыва в 1999 году проблемой занялся Эрстед (спутник). Необходимость запуска вызвана приходом Эпохи Водолея и описанными выше событиями. Пока исследованием магнитного щита Земли занимается спутниковая группировка Swarm. Считается, что изменения спровоцированы колебаниями состава ядра планеты, ученые хотят найти точные зависимости. После полугода работы (начало 2014 года) результаты исследований стали вызывать озабоченность: магнитное поле ослабевает, меняет конфигурацию.

Что такое индукция магнитного поля? Для ответа на этот вопрос вспомним основы электродинамики. Как известно, на неподвижный носитель заряда q, располагающийся в зоне действия электрического поля, оказывается смещающее воздействие с силой F. Чем больше значение заряда (независимо от его свойств), тем больше сила. Это является напряженностью - одним из свойств поля. Если обозначить ее как E, то получим:

В свою очередь, на подвижные заряды оказывают воздействие поля магнитной природы. Однако в этом случае сила зависит не только от величины но и от вектора направления движения (или, что более точно, скорости).

Каким же образом можно изучить конфигурацию Эту задачу успешно решили известные ученые - Ампер и Эрстед. Они размещали в поле проводящий контур с электрическим током и изучали интенсивность оказываемого воздействия. Получалось, что на результат влияла ориентация контура в пространстве, что указывало на наличие вектора направленности момента сил. Индукция магнитного поля (измеряется в Теслах) выражается через отношение упомянутого момента силы к произведению площади проводника контура и протекающего Фактически, она характеризует само поле, что в данном случае и необходимо. Выразим все сказанное через простую формулу:

где M - максимальное значение момента сил, зависит от ориентации контура в магнитном поле; S - суммарная площадь контура; I - значение тока в проводнике.

Так как индукция магнитного поля является то далее требуется найти его ориентированность. Наиболее наглядное представление о нем дает обыкновенный компас, стрелка которого всегда указывает на северный полюс. Индукция магнитного поля земли ориентирует ее согласно магнитным силовым линиям. То же самое происходит при размещении компаса вблизи проводника, по которому протекает ток.

Описывая контур, следует ввести понятие магнитного момента. Это вектор, численно равный произведению S на I. Его направление перпендикулярно условной плоскости самого токопроводящего контура. Можно определить по известному правилу правого винта (или буравчика, что одно и то же). Индукция магнитного поля в векторном представлении совпадает с направлением магнитного момента.

Таким образом, можно вывести формулу для действующей на контур силы (все величины векторные!):

где M - суммарный вектор момента силы; B - магнитная индукция; m - значение

Не менее интересна индукция магнитного поля соленоида. Он представляет собой цилиндр с намотанной проволокой, по которой протекает электрический ток. Является одним из наиболее используемых элементов в электротехнике. В повседневной жизни с соленоидами каждый человек сталкивается постоянно, даже не подозревая об этом. Итак, создаваемое внутри цилиндра полностью однородно, а его вектор направлен соосно с цилиндром. А вот вне корпуса цилиндра вектор магнитной индукции отсутствует (равен нулю). Однако указанное верно лишь для идеального соленоида с бесконечной длиной. На практике же ограничение вносит свои коррективы. Прежде всего, вектор индукции никогда не приравнивается к нулю (поле регистрируется и вокруг цилиндра), а внутренняя конфигурация также утрачивает свою однородность. Для чего же тогда нужна «идеальная модель»? Очень просто! Если диаметр цилиндра меньше длины (как правило, так и есть), то в центре соленоида вектор индукции практически совпадает с этой характеристикой идеальной модели. Зная диаметр и длину цилиндра, можно вычислить различие между индукцией конечного соленоида и его идеального (бесконечного) собрата. Обычно ее выражают в процентах.

Мы знаем, что проводник с током, размещенный в магнитном поле, подвергается воздействию силы. Ее направление зависит от направления силовых линий поля и если последние известны, то направление силы можно определить, воспользовавшись или правого винта.

Рассмотрим теперь, от чего зависит величина этой силы. Обратимся к опыту.

Подвесим к левому плечу коромысла линейный проводник АВ и поместим его между полюсами N и S электромагнита так, чтобы он был перпендикулярен по отношению к силовым линиям магнитного поля. Последовательно с этим проводником включим амперметр, а также реостат, с помощью которого можно измерять ток в нашем проводнике. Уравновесим весы и замкнем цепь. Пусть ток в проводнике АВ направлен от В к А. Равновесие весов нарушится; чтобы его восстановить, на правую чашу придется положить добавочный разновесок, вес которого будет равен силе, воздействующей на проводник вертикально вниз. Будем теперь изменять ток в нашем проводнике; мы заметим, что с увеличением тока увеличивается и сила, которая действует на проводник. Изменения покажут нам, что сила, с какой магнитное поле воздействует на проводник, прямо пропорциональна току, протекающему по нему.

Зависит ли эта сила от длины проводника АВ? Чтобы решить этот вопрос, будем брать проводники разной длины при одном и том же токе. Измерения покажут нам, что сила, с какой магнитное поле воздействует на проводник с током, будет прямо пропорциональна длине части проводника, расположенной в магнитном поле.

Пусть F - сила, которая воздействует на проводник с током, размещенный в магнитном поле, l - длина этого проводника и I - ток в нем.

С изменением длины проводника l и тока в нем меняется, как мы видели, и величина силы F.

Отношение же силы F к длине проводника I и к току в нем есть величина постоянная, не зависящая от тока в нем; следовательно, величина этого отношения может характеризовать магнитное поле.

Эту величину называют магнитная индукция или индукция магнитного поля.

Обозначим магнитную индукцию буквой В. Согласно определению, можно написать:

В системе СИ единицей магнитной индукции выступает индукция поля, в котором проводник с током 1 А и длиной 1 м подвергается воздействию силы 1 Н. Наименование такой единицы: 1 ньютон/(ампер˖метр) (сокращенно 1 Н/(А˖м)).

Покажем, что 1 Н/(А˖м) = 1 (В˖сек)/м²:

1 Н/(А˖м) = 1 (Н˖м)/(А˖м²) = 1 дж/(А˖м²) = 1 (В˖А˖сек)/(А˖м²) = 1 (В˖сек)/м².

Единица 1 вольт-секунда называется вебером (вб). Следовательно, 1 вб/м² или 1 тесла (Тл) - единица магнитной индукции. Тогда как в системе измерения СГСМ единица измерения магнитной индукции - гаусс (Гс):

1 Тл = 10⁴ Гс.

В общем случае величина силы, которая воздействует на проводник с током, размещенный в магнитное поле, определяется законом Ампера:

F = BI l sin α, где α - угол между направленностью тока (I) и вектором магнитного поля (В).

Индукция магнитного поля численно равняется силе, с которой воздействует магнитное поле на единичный элемент тока, перпендикулярно расположенный к вектору индукции. Магнитная индукция зависит от свойств среды.



Случайные статьи

Вверх