Вред удобрений — мифы и реальность. Минеральные удобрения Калийные удобрения - влияние на растения

Кубанский государственный университет

Биологический факультет

по дисциплине «Экология почв»

«Скрытое отрицательное действие удобрений».

Выполнила

Афанасьева Л. Ю.

студентка 5-ого курса

(специальность –

«Биоэкология»)

Проверила Букарева О. В.

Краснодар, 2010

Введение…………………………………………………………………………………...3

1. Влияние минеральных удобрений на почвы…………………………………...4

2. Влияние минеральных удобрений на атмосферный воздух и воду…………..5

3. Влияние минеральных удобрений на качество продукции и здоровье людей………………………………………………………………………………………6

4. Геоэкологические последствия применения удобрений……………………...8

5. Воздействие удобрений на окружающую среду……………………………..10

Заключение……………………………………………………………………………….17

Список использованной литературы…………………………………………………...18

Введение

Загрязнение почв чужеродными химическими веществами наносит им большой ущерб. Существенным фактором загрязнения среды является химизация сельского хозяйства. Даже минеральные удобрения при неправильном их применении способны наносить экологический ущерб при сомнительном экономическом эффекте.

Многочисленные исследования ученых–агрохимиков показали, что разные виды и формы минеральных удобрений неодинаково влияют на свойства почв. Внесенные в почву удобрения вступают в сложные взаимодействия с нею. Здесь происходят всевозможные превращения, которые зависят от целого ряда факторов: свойств удобрений и почвы, погодных условий, агротехники. От того, как происходит превращение отдельных видов минеральных удобрений (фосфорных, калийных, азотных), зависит влияние их на почвенное плодородие.

Минеральные удобрения – неизбежное следствие интенсивного земледелия. Имеются расчеты, что для достижения желаемого эффекта от применения минеральных удобрений мировое потребление их должно составить около 90 кг/год на человека. Суммарное производство удобрений в этом случае достигает 450-500 млн. т/год, в настоящее же время их мировое производство равно 200-220 млн. т/год или 35-40 кг/год на человека.

Применение удобрений можно рассматривать как одно из проявлений закона увеличения вложения энергии в единицу производимой сельскохозяйственной продукции. Это значит, что для получения одной и той же прибавки урожая требуется все большее количество минеральных удобрений. Так, на начальных этапах применения удобрений прибавку 1 т зерна с 1 га обеспечивает внесение 180-200 кг азотных туков. Следующая дополнительная тонна зерна связана с дозой удобрений в 2-3 раза большей.

Экологические последствия применения минеральных удобрений целесообразно рассматривать, по крайней мере, с трех точек зрения:

Местное влияние удобрений на экосистемы и почвы, в которые они вносятся.

Запредельное влияние на другие экосистемы и их звенья, прежде всего на водную среду и атмосферу.

Влияние на качество продукции, получаемой с удобренных почв, и здоровье людей.

1. Влияние минеральных удобрений на почвы

В почве как системе происходят такие изменения, которые ведут к потере плодородия:

Повышается кислотность;

Изменяется видовой состав почвенных организмов;

Нарушается круговорот веществ;

Разрушается структура, ухудшающая другие свойства.

Имеются данные (Минеев, 1964), что следствием увеличения кислотности почв при применении удобрений (прежде всего кислых азотных) является повышенное вымывание из них кальция и магния. Для нейтрализации данного явления приходится вносить в почву эти элементы.

Фосфорные удобрения не обладают столь выраженным подкисляющим эффектом, как азотные, но они могут вызывать цинковое голодание растений и накопление стронция в получаемой продукции.

Многие удобрения содержат посторонние примеси. В частности, их внесение может повышать радиоактивный фон, вести к прогрессивному накоплению тяжелых металлов. Основной способ уменьшить эти следствия – умеренное и научно обоснованное применение удобрений:

Оптимальные дозы;

Минимальное количество вредных примесей;

Чередование с органическими удобрениями.

Следует также помнить выражение, что «минеральные удобрения являются средством маскировки реальностей». Так, имеются данные, что с продуктами эрозии почв выносится больше минеральных веществ, чем их вносится с удобрениями.

2. Влияние минеральных удобрений на атмосферный воздух и воду

Влияние минеральных удобрений на атмосферный воздух и воду связано в основном с их азотными формами. Азот минеральных удобрений поступает в воздух либо в свободном виде (в результате денитрификации), либо в виде летучих соединений (например, в форме закиси N 2 O).

По современным представлениям, газообразные потери азота из азотных удобрений составляют от 10 до 50% от его внесения. Действенным средством снижения газообразных потерь азота является научно обоснованное их применение:

Внесение в корнеобразующую зону для быстрейшего поглощения растениями;

Использование веществ-ингибиторов газообразных потерь (нитропирин).

Наиболее ощутимое влияние на водные источники, кроме азотных, оказывают фосфорные удобрения. Вынос удобрений в водные источники сводится к минимуму при их правильном внесении. В частности, недопустимо разбрасывание удобрений по снеговому покрову, рассеивание их с летательных аппаратов вблизи водоемов, хранение под открытым небом.

3. Влияние минеральных удобрений на качество продукции и здоровье людей

Минеральные удобрения способны оказывать отрицательное воздействие как на растения, так и на качество растительной продукции, а также на организмы, ее потребляющие. Основные из таких воздействий представлены в таблицах 1, 2.

При высоких дозах азотных удобрений увеличивается риск заболеваний растений. Имеет место чрезмерное накопление зеленой массы, и резко возрастает вероятность полегания растений.

Многие удобрения, особенно хлорсодержащие (хлористый аммоний, хлористый калий), отрицательно действуют на животных и человека в основном через воду, куда поступает высвобождающийся хлор.

Отрицательное действие фосфорных удобрений связано в основном с содержащимися в них фтором, тяжелыми металлами и радиоактивными элементами. Фтор при его концентрации в воде более 2 мг/л может способствовать разрушению эмали зубов.

Таблица 1 – Воздействие минеральных удобрений на растения и качество растительной продукции

Виды удобрений

Влияние минеральных удобрений

положительное

отрицательное

Повышают содержа-ние белка в зерне; улучшают хлебопекар-ные качества зерна. При высоких дозах или несвоевременных способах внесения – накопление в виде нит-ратов, буйный рост в ущерб устойчивости, повышенная заболеваемость, особенно гриб-ными болезнями. Хлористый аммоний спо-собствует накоплению Cl. Основные накопи-тели нитратов – овощи, кукуруза, овес, табак.

Фосфорные

Снижают отрицатель-ные воздействия азота; улучшают качество продукции; способст-вуют повышению ус-тойчивости растений к болезням. При высоких дозах возможны токсикозы растений. Действуют в основном через содер-жащиеся в них тяжелые металлы (кадмий, мышьяк, селен), радиоактивные элементы и фтор. Основные накопители – петрушка, лук, щавель.

Калийные

Аналогично фосфор-ным. Действуют в основном через накопление хлора при внесении хлористого калия. При избытке калия – токсикозы. Основные нако-пители калия – картофель, виноград, гречиха, овощи закрытого грунта.

Таблица 2 – Воздействие минеральных удобрений на животных и человека

Виды удобрений

Основные воздействия

Азотные - нитратные формы Нитраты (ПДК для воды 10 мг/л, для пищевых продуктов – 500 мг/день на человека) восстанавливаются в организме до нитритов, вызывающих нарушение обмена веществ, отравления, ухудшение иммунологического статуса, метгемоглобинию (кислородное голодание тканей). При взаимодействии с аминами (в желудке) образуют нитрозамины – опаснейшие канцерогены. У детей могут вызывать тахикардию, цианоз, потерю ресниц, разрыв альвеол. В животноводстве: авитаминозы, уменьшение продук-тивности, накопления мочевины в молоке, повышение забо-леваемости, снижение плодовитости.
Фосфорные - суперфосфат Действуют в основном через фтор. Избыток его в питьевой воде (более 2 мг/л) вызывает повреждение эмали зубов у человека, потерю эластичности кровеносных сосудов. При содержании более 8 мг/л – остеохондрозные явления.
Хлорсодержащие удобрения - хлористый калий - хлористый аммоний Потребление воды с содержанием хлора более 50 мг/л вызывает отравления (токсикозы) человека и животных.


Из отдельных элементов питания на формирование генеративных органов зимующих глазков винограда и на повышение морозоустойчивости растений положительное влияние оказывают калийные и фосфорные удобрения, которые способствуют более раннему созреванию винограда и быстрому завершению периода вегетации. При недостатке калия в растении наблюдается накопление растворимых форм азота, а синтез белковых веществ и накопление углеводов замедляются. Такое изменение в процессе обмена веществ у растений приводит к снижению их морозоустойчивости.
Следовательно, большое значение для повышения морозоустойчивости виноградного растения имеет режим почвенного питания. Морозоустойчивость растений повышается при обеспеченности всеми необходимыми элементами питания, в противном случае она снижается. Из-за недостатка или избытка отдельных элементов питания нарушается нормальный ход развития растений. При недостатке любого из элементов питания растения плохо ассимилируют и вследствие этого не откладывают на зиму необходимых запасов пластических веществ. Закаливание таких растений осенью проходит неудовлетворительно. Поэтому удобрение виноградников надо рассматривать как необходимый агротехнический прием, улучшающий их морозоустойчивость.
В повышении морозоустойчивости виноградных кустов большое значение имеют и другие агротехнические мероприятия: нагрузка кустов, зеленые операции, подвязка побегов и т. д. Перегрузка кустов урожаем на низком агротехническом фоне ослабляет рост побегов, ухудшает их вызревание, что также снижает их морозоустойчивость. У недостаточно нагруженных кустов рост может оказаться чрезмерно сильным и продолжительным, в результате чего общая задержка вегетации может также привести к невызреванию лозы и, следовательно, к снижению устойчивости растений к низким температурам. Таким образом, низкими температурами особенно повреждаются те растения, которые по той или иной причине оказались недостаточно подготовленными к зиме.
Исследования по влиянию режима минерального питания на морозоустойчивость виноградного растения, проведенные в условиях Армении на сорте Воскеат, показали, что кусты, которые удобряли смесью NPK, во время зимних морозов сохранились лучше, чем кусты, которые получали лишь азотное или неполное удобрение (табл. 10).

http://biofile.ru/bio/4234.html

К негативным последствиям применения удобрений следует отнести и увеличение подвижности некоторых микроэлементов, содержащихся в почве. Они более активно вовлекаются в геохимическую миграцию. Это ведет к возникновению в пахотном слое дефицита В, Zn, Сu, Мn . Ограниченное поступление микроэлементов в растения неблагоприятно влияет на процессы фотосинтеза и передвижение ассимилятов, снижает их устойчивость к заболеваниям, недостаточному и избыточному увлажнению, высоким и низким температурам . Основной причиной нарушений в обмене веществ растений при недостатке микроэлементов является снижение активности ферментных систем.

Недостаток микроэлементов в почве вынуждает применять микроудобрения. Так, в США их использование в период с 1969 по 1979 г.г. возросло с 34,8 до 65,4 тыс. т действующего вещества .

В связи с глубокими изменениями в агрохимических свойствах почв, происходящими в результате применения удобрений, возникла необходимость изучения их влияния на физические характеристики пахотного слоя. Основными показателями физических свойств почвы являются агрегатный состав и водопрочность почвенных частиц. Анализ результатов ограниченного количества исследований, проведенных с целью изучения влияния минеральных удобрений на физические свойства почвы, не позволяет сделать определенных выводов. В некоторых опытах наблюдалось ухудшение физических свойств . При повторной культуре картофеля доля почвенных агрегатов более 1 мм в варианте с внесением азота, фосфора и калия, по сравнению с неудобренным участком, снижалась с 82 до 77%. В других исследованиях при внесении полного минерального удобрения на протяжении пяти лет содержание в черноземе агрономически ценных агрегатов уменьшилось с 70 до 60%, а водопрочных - с 49 до 36% .

Чаще всего отрицательное влияние минеральных удобрений на агрофизические свойства почвы обнаруживается при изучении ее микроструктуры.

Микроморфологические исследования показали, что даже небольшие дозы минеральных удобрений (30-45 кг/га) оказывают отрицательное влияние на микроструктуру почвы, сохраняющееся на протяжении 1-2 лет после их внесения. Возрастает плотность упаковки микроагрегатов, снижается видимая порозность, уменьшается доля зернистых агрегатов . Продолжительное внесение минеральных удобрений ведет к снижению доли частиц губчатого микросложения и к увеличению на 11% неагрегатированного материала . Одной из причин ухудшения структуры является обеднение пахотного слоя экскрементами почвенных животных .

Вероятно, агрохимические и агрофизические свойства почв тесно связаны между собой, и поэтому увеличивающаяся кислотность, обеднение пахотного горизонта основаниями, уменьшение содержания гумуса, ухудшение биологических свойств должны закономерно сопровождаться ухудшением агрофизических свойств.

В целях предотвращения отрицательного влияния минеральных удобрений на свойства почвы следует периодически проводить известкование. К 1966 г. ежегодная площадь известкования в бывшем СССР превысила 8 млн. га, а объем вносимой извести составил 45,5 млн. т. Однако это не компенсировало потерь кальция и магния. Поэтому доля земель, подлежащих известкованию, в ряде регионов не уменьшилась, а даже несколько увеличилась. Для того, чтобы не допустить увеличения площади кислых земель, предполагалось удвоить поставки сельскому хозяйству известковых удобрений и довести их к 1990 г. до 100 млн.т .

Известкование, понижая кислотность почвы, одновременно вызывает повышение газообразных потерь азота. При проведении этого приема они возрастают в 1,5-2 раза . Такая реакция почв на внесение мелиорантов является результатом изменений в направленности микробиологических процессов, что может стать причиной нарушения геохимических круговоротов. В связи с этим высказывались сомнения в целесообразности использования известкования . Кроме того, известкование усугубляет и другую проблему – загрязнения почв токсическими элементами.

Минеральные удобрения являются основным источником загрязнения почв тяжелыми металлами (ТМ) и токсичными элементами. Это связано с содержанием в сырье, используемом для производства минеральных удобрений, стронция, урана, цинка, свинца, ванадия, кадмия, лантаноидов и других химических элементов. Их полное извлечение или не предусматривается вообще, или осложняется технологическими факторами . Возможное содержание сопутствующих элементов в суперфосфатах и в других видах минеральных удобрений, широко применяемых в современном земледелии, приведено в таблицах 1 и 2.

В больших количествах элементы-загрязнители обнаруживаются в извести. Ее внесение в количестве 5 т/га может изменить природные уровни кадмия в почве на 8,9% от валового содержания .

Таблица 1. Содержание примесей в суперфосфатах, мг/кг

При внесении минеральных удобрений в дозе 109 кг/га NPK в почву поступает примерно 7,87 г меди, 10,25 – цинка, 0,21 – кадмия, 3,36 – свинца, 4,22 – никеля, 4,77 – хрома . По данным ЦИНАО, за весь период использования фосфорных удобрений в почвы бывшего СССР внесено 3200 т кадмия, 16633 – свинца, 553 – ртути . Большая часть химических элементов, попавших в почву, находится в слабоподвижном состоянии. Период полувыведения кадмия составляет 110 лет, цинка – 510, меди – 1500, свинца – несколько тысяч лет .

Таблица 2. Содержание тяжелых металлов в удобрениях и извести, мг/кг

Загрязнение почвы тяжелыми и токсичными металлами ведет к накоплению их в растениях. Так, в Швеции концентрация кадмия в пшенице за текущее столетие увеличилась вдвое. Там же при применении суперфосфата в суммарной дозе 1680 кг/га, внесенной частями за 5 лет, наблюдали повышение содержания кадмия в зерне пшеницы в 3,5 раза . По данным некоторых авторов, при загрязнении почвы стронцием происходило трехкратное увеличение его содержания в клубнях картофеля . В России пока еще не уделяется достаточного внимания загрязнению растениеводческой продукции химическими элементами.

Использование загрязненных растений в качестве продуктов питания или кормов является причиной возникновения у человека и сельскохозяйственных животных различных заболеваний. К наиболее опасным тяжелым металлам относят ртуть, свинец и кадмий. Попадание в организм человека свинца ведет к нарушениям сна, общей слабости, ухудшению настроения, нарушению памяти и снижению устойчивости к бактериальным инфекциям . Накопление в продуктах питания кадмия, токсичность которого в 10 раз выше свинца, вызывает разрушение эритроцитов крови, нарушение работы почек, кишечника, размягчение костной ткани . Парные и тройные сочетания тяжелых металлов усиливают их токсический эффект .

Экспертным комитетом ВОЗ разработаны нормативы поступления в человеческий организм тяжелых металлов. Предусматривается, что каждую неделю здоровый человек массой 70 кг может получать с пищевыми продуктами, без вреда для своего здоровья, не более 3,5 мг свинца, 0,625 мг кадмия и 0,35 мг ртути .

В связи с возрастанием загрязнения продуктов питания были приняты нормативы содержания ТМ и ряда химических элементов в продукции растениеводства (табл. 3).

Таблица 3. Предельно допустимые концентрации химических элементов, мг/кг сырого продукта

Элемент Хлебные продукты и зерно Овощи Фрукты Молочные продукты
Ртуть 0,01 0,02 0,01 0,005
Кадмий 0,02 0,03 0,03 0,01
Свинец 0,2 0,5 0,4 0,05
Мышьяк 0,2 0,2 0,2 0,05
Медь 0,5
Цинк 5,0
Железо 3,0
Олово - 100,0
Сурьма 0,1 0,3 0,3 0,05
Никель 0,5 0,5 0,5 0,1
Селен 0,5 0,5 0,5 0,5
Хром 0,2 0,2 0,1 0,1
Алюминий 1,0
Фтор 2,5 2,5 2,5 2,5
Йод 0,3

Загрязнение растениеводческой продукции ТМ и химическими элементами опасно для человека не только при непосредственном ее употреблении, но и при использовании на кормовые цели. Например, скармливание коровам растений, выращенных на загрязненных почвах, привело к увеличению концентрации кадмия в молоке до 17-30 мг/л , в то время как допустимый уровень составляет 0,01 мг/л.

Для предотвращения накопления химических элементов в молоке, мясе, исключения возможности отрицательного их влияния на состояние сельскохозяйственных животных во многих странах принимаются предельно допустимые концентрации (ПДК) для химических элементов, содержащихся в кормовых растениях. По стандартам ЕЭС безопасное содержание свинца в фураже составляет 10 мг/кг сухого вещества. В Нидерландах допустимый уровень содержания кадмия в зеленых кормах равен 0,1 мг/кг сухой массы .

Фоновое содержание химических элементов в почвах приведено в таблице 4. При накоплении ТМ в почве и последующем поступлении их в растения они концентрируются, в основном, в вегетативных органах, что объясняется защитной реакцией растений . Исключение составляет кадмий, который легко проникает как в листья и стебли, так и в генеративные части . Для правильной оценки степени накопления в растениях различных элементов необходимо знать их обычное содержание при выращивании сельскохозяйственных культур на незагрязненных почвах. Сведения по этому вопросу довольно разноречивы. Это объясняется большими различиями в химическом составе почв. Фоновое содержание свинца в почвах равно примерно 30, а кадмия - 0,5 мг/кг . Концентрация свинца в растениях, выращиваемых на чистых грунтах, составляет 0,009-0,045, а кадмия – 0,011-0,67 мг/кг сырого вещества .

Таблица 4. Содержание некоторых элементов в пахотных почвах, мг/кг

Элемент Обычное содержание ПДК Элемент Обычное содержание пдк
As 0,1-20 Ni 2-50
В 5-20 Pb 0,1-20
Be 0,1-5 Sb 0,01-0,5
Вг 1-10 Se 0,01-5
Cd 0,01-1 Sn 1-20
Со 1-10 Tl 0,01-0,5
Сг 2-50 Ti 10-5000
Сu 1-20 U 0,01-1
F 50-200 V 10-100
Ga 0,1-10 Zn 3-50
Hg 0,01-1 Mo 0,2-5

Установление жестких норм по загрязнению растений объясняется тем, что при выращивании их на загрязненных почвах содержание отдельных элементов может увеличиваться в десятки раз. В то же время некоторые химические элементы становятся токсичными при трех- и даже двукратном увеличении их концентрации. Например, содержание меди в растениях обычно составляет примерно 5-10 мг/кг в расчете на сухую массу. При концентрации 20 мг/кг растения становятся токсичными для овец, а при 15 мг/кг - для ягнят .

Глава 2 http://selo-delo.ru/8-zemelnie-resursi?start=16

В связи с уменьшением объема применения минеральных удобрений значимость органических удобрений как источника питательных элементов возрасла. Они являются наиболее полноценными по содержанию питательных элементов, необходимых растениям. В 1 т подстилочного навоза содержится 5 кг N, 2,5 кг P 2 O 5 , 6 кг К 2 О; 3 - 5 г В, 25 г Zn; 3,9 г Cu, 0,5 Мо и 50 г Mn. Следует иметь в виду, что себестоимость 1 кг питательных элементов, внесенных с твердым навозом, на 24 - 37 % ниже, чем в эквивалентном количестве минеральных удобрений. В повышении плодородия почв и урожайности сельскохозяйственных культур важная роль отводится органическим удобрениям.

Внесение органических удобрений оказывает положительное влияние на баланс гумуса в почве, улучшает воздушный и водный режим почвы, усиливает микробиологическую активность почвы. Из 1 т органических удобрений на суглинистых почвах образуется 50 кг/га гумуса, на супесчаных - 40 и песчаных - 35.

В настоящее время в мире на 1 га пашни вносят около 15 т/га органических удобрений. В США применяется около 14 т/га, Англии - 25, Нидерландах - 70 т/га. В Беларуси применение органических удобрений достигло в 1991 г. 83 млн. тонн, или 14,5 т/га.

В последние годы в Республике Беларусь ввиду систематического сокращения поголовья скота и резкого сокращения объемов заготовок торфа значительно снизилось применение органических удобрений, что привело к снижению темпов накопления гумуса, а в некоторых районах произошло уменьшение содержания гумуса. В 1995 г. применение органических удобрений снизилось в республике до 9,5, а в 1999 г. – до 8,2 т/га.

Одним из мероприятий, позволяющим снизить применение органических удобрений, является обоснование оптимальных размеров посевов многолетних трав и повышение их урожайности. В настоящее время на 1 га пропашных культур приходится 3 га многолетних трав. Даже при уменьшении объемов применения органических удобрений в последние годы за счет увеличения доли растительных остатков в общем объеме поступающего в почву органического вещества с 46 до 55% удалось в целом на пахотных почвах поддержать достигнутый уровень содержания гумуса в почве. Для поддержания бездефицитного баланса гумуса в республике необходимо обеспечить применение органических удобрений на уровне 50 млн. т/га, или 9 - 10 т/га. Предполагается, что в связи с возрастанием поголовья скота внесение органических удобрений может возрасти до 52,8 млн. тонн. Потребность в торфе республики составляет около 3 млн тонн.

При правильном применении окупаемость 1 т органических удобрений составляет: у зерновых - 20 кг, картофеля – 90, кормовых корнеплодов – 200, кукурузы (зеленая масса) – 150 кг.

В сельском хозяйстве применяются следующие виды органических удобрений:

1. Органические удобрения на основе отходов животноводства и птицеводства:

а) подстилочный навоз;

б) бесподстилочный навоз;

в) навозная жижа;

г) птичий помет;

2. Удобрения из природного органического сырья:

б) компосты;

3. Зеленое удобрение и использование побочной продукции растениеводства:

а) солома;

б) зеленое удобрение;

4. Органические удобрения на основе коммунальных и промышленных отходов:

а) промышленные и бытовые отходы;

б) осадки сточных вод;

в) гидролизный лигнин.

Подстилочный навоз - смесь жидких и твердых экскрементов животных с подстилкой. Жидкие экскременты животных относятся к калийно-азотному удобрению, а твердые - к азотно-фосфорному (табл. 5.1).

Качество навоза, его химический состав зависят: 1) от типа кормления; например, при содержании в рационе концентратов навоз содержит больше питательных веществ, чем при кормлении грубыми кормами; 2) вида животных (табл.5.2); 3) количества и вида подстилки; 4) способа хранения (табл. 5.3; 5.4)

В различном подстилочном материале содержится следующее количество питательных элементов:

При рыхлом, или горячем способе хранения, когда навоз не уплотняется, создаются аэробные условия, развиваются термофильные бактерии, температура внутри бурта достигает 50 - 60 0 С. Идет бурное разложение органического вещества, азот улетучивается в виде NН 3 , наблюдаются потери Р 2 О 5 и К 2 О. Потери азота при рыхлом хранении – около 30%.

Т а б л и ц а 5.1. Содержание сухого вещества, азота и зольных элементов в экскрементах животных, % http://www.derev-grad.ru/himicheskaya-zaschita-rastenii/udobreniya.html

При горячепрессованном, или рыхло-плотном, способе хранения (способ Кранца) навоз рыхлой укладки после разогревания до 50 - 60 0 С уплотняется. Сначала создаются аэробные условия, затем - анаэробные. Потери азота и органического вещества уменьшаются.

Существует также холодный, или плотный, способ хранения, когда создаются анаэробные условия. Навоз в буртах сразу уплотняется. Это лучший способ хранения с точки зрения сохранения в нем питательных веществ. В этом случае в буртах сохраняется постоянная температура (15 - 35 0 С). Потери азота небольшие, так как навоз все время находится в плотном и влажном состоянии. В такой навоз доступ воздуха ограничен, а свободные от воды поры заняты углекислотой, что замедляет микробиологическую деятельность.

В зависимости от степени разложения навоз на соломенной подстилке подразделяют на свежий, полуперепревший и перегной.

В свежем слаборазложившемся навозе солома незначительно изменяет цвет и прочность. В полуперепревшем она приобретает темно-коричневый цвет, становится менее прочной и легко разрывается. В этой стадии разложения навоз теряет 10 - 30% первоначальной массы и такое же количество органического вещества. Невыгодно доводить навоз до стадии перегноя, так как в этом случае около 35% органического вещества теряется.

Слаборазложившийся навоз в первый год может оказать слабое действие, а в последействии на второй и третий годы могут быть сравнительно высокие прибавки урожая. При наличии в хозяйстве разной степени разложения навоза более разложившийся навоз в районах достаточного увлажнения можно внести весной под пропашные культуры, а менее разложившийся - летом после уборки однолетних трав под озимые хлеба.

Т а б л и ц а 5.2.Химический состав свежего навоза, %

Навоз на соломенной подстилке Навоз на торфяной подстилке
Составные части КРС конский овечий свиной КРС конский
Вода 77,3 71,3 64,4 72,4 77,5 67,0
Орган. вещество 20,3 25,4 31,8 25,0 - -
Азот: общий 0,45 0,58 0,83 0,45 0,60 0,80
аммиачный 0,14 0,19 - 0,20 0,18 0,28
Фосфор 0,23 0,28 0,23 0,19 0,22 0,25
Калий 0,50 0,63 0,67 0,60 0,48 0,53

Подстилочный навоз нерационально вносить в почву в свежем виде, поскольку может произойти мобилизация подвижных форм азота микроорганизмами, а растения в начале вегетации его не получат в достаточном количестве. Кроме того, свежий навоз содержит семена сорняков. Поэтому в хозяйствах следует использовать вызревший, полуперепревший навоз. При заготовке органических удобрений в зимний период необходимо продлевать сроки их компостирования и хранения, а внесение производить в летне-осенний период. Это позволит получать высококачественный навоз, свободный от сорняков и патогенной микрофлоры.

Та б л и ц а 5.3. Влияние способов хранения подстилочного навоза на потери органического вещества и азота, %

Т а б л и ц а 5.4. Содержание элементов питания в навозе на соломенной подстилке в зависимости от степени его разложения, %

Для получения навоза хорошего качества его хранят в навозахранилищах или в полевых штабелях.

Навозохранилища. При укладке штабелей стремятся к тому, чтобы навоз различной степени разложения не был перемешан, а находился в отдельных частях навозохранилища. Укладка навоза в штабеля шириной 2 - 3 м начинается вдоль той стороны хранилища, которая прилегает к жижесборнику. Навоз укладывают небольшими участками, уплотняя каждый метровый слой навоза, а затем доводят до полной высоты (1,5 - 2 м). После того, как первый штабель будет полностью уложен, вдоль него, по мере поступления навоза, укладывают таким же образом второй штабель, затем третий и т.д. до заполнения навозохранилища. Штабеля должны плотно примыкать друг к другу. При таком порядке закладки на одной стороне навозохранилища будет находиться более разложившейся навоз, а на другой - менее разложившийся, что позволит использовать навоз нужного качества

3) Глава 4 Примения органо-минеральных комплексов для повышения плодородия почв

Органоминеральные удобрения http://biohim-bel.com/organomineralnye-udobreniya

Почва не может быть постоянно плодородной, если ее не удобрять. Для улучшения свойств почвы применяются различные вещества, как правило, минеральные или органические. Эти виды отличаются друг от друга насыщенностью питательными веществами. У каждого из этих типов есть свои достоинства и свои недостатки. Так, например, органические удобрения не всегда содержат полный комплекс веществ, необходимых для обеспечения максимально комфортных условий для растения. В таком случае органические удобрения дополняют минеральными. В качестве примера можно привести перегной или золу, которые содержат очень маленькое количество азота. Чтобы сделать почву более плодородной, эти средства используются в сочетании с минеральными азотными средствами. Кроме того, использование непроверенных органических удобрений может способствовать заражению растения какой-либо инфекцией.

В настоящее время удобрения рассматриваются как неотъемлемая часть системы земледелия, как одно из главных средств, стабилизирующее урожайность в условиях засухи. Объемы применения удобрений непрерывно растут и очень важно применять их эффективно и рационально.

Органические удобрения содержат питательные вещества, главным образом в составе органических соединений, и являются обычно продуктами естественного происхождения (навоз, торф, солома, фекалии и др.). В отдельную группу выделяют бактериальные удобрения, которые содержат культуры микроорганизмов, способствующих при их внесении в почву накоплению в ней усвояемых форм питательных элементов. (Ягодин Б. А., Агрохимия, 2002)

Органические удобрения, особенно навоз, оказывают хорошее и устойчивое действие на всех почвах, особенно на солонцеватых и солонцовых почвах. При систематическом внесении навоза повышается плодородие почвы; кроме того, тяжелые глинистые почвы становятся рыхлыми и водопроницаемыми, а легкие (песчаные) - более связанными, влагоемкими. Большой эффект дает сочетание минеральных удобрений с органическими.

Минеральные удобрения -- это промышленные или ископаемые продукты, содержащие элементы, необходимые для питания растений и повышения плодородия почв. Их получают из минеральных веществ путем химической или механической переработки. Это главным образом минеральные соли, однако к ним относятся и некоторые органические вещества, например, мочевина. (Ягодин Б. А., Агрохимия, 2002)

Основу эффективности минеральных удобрений составляют дифференцированные с учетом почвенно-климатических и других факторов и рассчитанные в зависимости от них дозы для их внесения.

Азотные удобрения резко увеличивают рост и развитие растений. При внесении этих удобрений на лугах листья и стебли растений развиваются сильнее, становятся более мощными, благодаря чему значительно повышается урожай. Особенно это относится к злаковым растениям.

Фосфорные удобрения сокращают период вегетации трав, способствуют быстрому развитию корневой системы и более глубокому проникновению ее в почву, делают растения более засухоустойчивыми, что особенно ценно для лиманных лугов.

С повышением плодородия дозы удобрений снижаются, что позволяет перейти на систему удобрений в звеньях севооборотов с широким использованием рядкового фосфорного удобрения.

Калийные удобрения более сильное действие оказывают на низинных болотных и суходольных лугах с временно избыточным увлажнением. Способствуют накоплению углеводов, а, следовательно, и повышению зимостойкости многолетних кормовых трав. Вносят калийные удобрения весной или после укоса, а также осенью.

Микроудобрения следует применять дифференцированно с учетом почвенных условий и биологических особенностей растений.

При внесении микроудобрений в почву уделяется большое внимание тому, чтобы они как можно меньше вымывались и более длительное время оставались в доступной для растений формах. Так, применение сложных гранулированных удобрений уменьшает соприкосновение с почвой входящих в гранулы микроэлементов. При таком способе внесения микроэлементы меньше переходят в неусвояемые формы.

При квалифицированном применении удобрений повышаются плодородие почв, продуктивность земледелия, основные фонды и фондоотдача, производительность труда и его оплата, чистый доход и рентабельность производства.

В настоящее время наблюдается экологический кризис. Это реально существующий процесс, вызванный в природе антропогенной деятельностью. Появляется множество местных проблем; региональные проблемы превращаются в глобальные. Постоянно усиливается загрязнение воздуха, воды, земель, продуктов питания.

В результате антропогенного воздействия, в почве происхо-дит накопление тяжелых металлов, что отрицательно сказывается на сельскохозяйственных культурах, изменяются ее состав, концентрация, реакция и буферность почвенного раствора.

Разные биогенные элементы, попадая в почву с удобрениями, претерпевают существенные превращения. Одновременно они оказывают значительное влияние на плодородие почвы.

Да и свойства почвы, в свою очередь, могут оказывать на вносимые удобрения как позитивное, так и негативное влияние. Эта взаимосвязь удобрений и почвы является весьма сложной и требует глубоких и обстоятельных исследований. С превращениями удобрений в почве связаны и различные источники их потерь. Эта проблема представляет собой одну из основных задач агрохимической науки. Р. Kundler et al. (1970) в общем виде показывают следующие возможные превращения различных химических соединений и связанные с ними потери питательных элементов путем вымывания, улетучивания в газообразной форме и закрепления в почве.

Вполне понятно, что это лишь некоторые показатели превращения различных форм удобрений и питательных элементов в почве, они еще далеко не охватывают многочисленные пути превращения различных минеральных удобрений в зависимости от типа и свойств почвы.

Поскольку почва является важным звеном биосферы, она прежде всего подвергается сложному комплексному воздействию вносимых удобрений, которые могут оказывать следующее влияние на почву: вызывать подкисление или подщелачивание среды; улучшать или ухудшать агрохимические и физические свойства почвы; способствовать обменному поглощению ионов или вытеснять их в почвенный раствор; способствовать пли препятствовать химическому поглощению катионов (биогенных и токсических элементов); способствовать минерализации или синтезу гумуса почвы; усиливать или ослаблять действие других питательных элементов почвы или удобрений; мобилизовать или иммобилизовать питательные элементы почвы; вызывать антагонизм или синергизм питательных элементов и, следовательно, существенно влиять на их поглощение и метаболизм в растениях.

В почве может быть сложное прямое или косвенное взаимовлияние между биогенными токсичными элементами, макро — и микроэлементами, а это оказывает значительное влияние на свойства почвы, рост растений, их продуктивность и качество урожая.

Так, систематическое применение физиологически кислых минеральных удобрений на кислых дерново-подзолистых почвах повышает их кислотность и ускоряет вымывание из пахотного слоя кальция и магния и, следовательно, увеличивает степень ненасыщенности основаниями, снижая почвенное плодородие. Поэтому на таких ненасыщенных почвах применение физиологически кислых удобрений необходимо сочетать с известкованием почвы и нейтрализацией вносимых минеральных удобрений.

Двадцатилетнее применение удобрений в Баварии на иловатой, плохо дренированной почве в сочетании с известкованием под травы привело к повышению pH с 4,0 до 6,7. В поглощаемом комплексе почвы обменный алюминий заменился кальцием, что привело к значительному улучшению свойств почвы. Потери же кальция в результате выщелачивания составили 60-95% (0,8-3,8 ц/га в год). Как показали расчеты, ежегодная потребность в кальции составила 1,8-4 ц/га. В этих опытах урожай сельскохозяйственных растений хорошо коррелировал со степенью насыщенности почвы основаниями. Авторы пришли к выводу, что для получения высокого урожая необходимы pH почвы >5,5 и высокая степень насыщенности основаниями (V = 100%); при этом удаляется обменный алюминий из зоны наибольшего размещения корневой системы растений.

Во Франции выявлено большое значение кальция и магния в повышении плодородия почв и улучшении их свойств. Установлено, что выщелачивание приводит к обеднению запаса кальция и магния

в почве. В среднем ежегодные потери кальция составляют 300 кг/га (200 кг на кислой почве и 600 кг на карбонатной), а магния - 30 кг/га (на песчаных почвах они достигали 100 кг/га). Кроме того, некоторые культуры севооборота (бобовые, технические и др.) выносят значительные количества кальция и магния из почвы, поэтому следующие за ними зерновые культуры часто обнаруживают симптомы недостаточности этих элементов. Не нужно забывать также, что кальций и магний выполняют роль физико-химических мелиорантов, оказывая благоприятное влияние на физические и химические свойства почвы, а также на ее микробиологическую деятельность. Это косвенно влияет на условия минерального питания растений другими макро — и микроэлементами. Для поддержания плодородия почвы необходимо восстановление уровня содержания кальция и магния, потерянных в результате выщелачивания и выноса из почвы сельскохозяйственными культурами; для этого ежегодно следует вносить 300-350 кг CaO и 50-60 кг MgO на 1 га.

Задача заключается не только в восполнении потерь этих элементов вследствие выщелачивания и выноса сельскохозяйственными культурами, но и в восстановлении плодородия почвы. В этом случае нормы внесения кальция и магния зависят от первоначального значения pH, содержания в почве MgO и фиксирующей способности почвы, т. е. прежде всего от содержания в ней физической глины и органического вещества. Подсчитано, что для повышения pH почвы на одну единицу нужно внести извести от 1,5 до 5 т/га, в зависимости от содержания физической глины (<10% - >30%), Чтобы повысить содержание магния в пахотном слое почвы на 0,05%, нужно внести 200 кг MgO/га.

Очень важно установить правильные дозы извести в конкретных условиях ее применения. Этот вопрос не настолько прост, как часто его представляют. Обычно дозы извести устанавливают в зависимости от степени кислотности почвы и насыщенности ее основаниями, а также разновидности почвы. Эти вопросы требуют дальнейшего, более глубокого изучения в каждом конкретном случае. Важен вопрос о периодичности внесения извести, дробности внесения в севообороте, сочетании известкования с фосфоритованием и внесением других удобрений. Установлена необходимость в опережающем известковании как условии для повышения эффективности минеральных удобрений на кислых почвах таежно-лесной и лесостепной зон. Известкование существенно влияет на подвижность макро — и микроэлементов внесенных удобрений и самой почвы. А это сказывается на продуктивности сельскохозяйственных растений, качестве продуктов питания и кормов, а следовательно, на здоровье человека и животных.

М. Р. Sheriff (1979) считает, что о возможном переизвестковании почв можно судить по двум уровням: 1) когда продуктивность пастбищ и животных не повышается при дополнительном внесении извести (это автор называет максимальным экономическим уровнем) и 2) когда известкование нарушает баланс питательных веществ в почве, и это отрицательно сказывается на продуктивности растений и здоровье животных. Первый уровень на большей части почв наблюдается при pH около 6,2. На торфяных почвах максимальный экономический уровень отмечается при pH 5,5. Некоторые пастбища на легких вулканических почвах не обнаруживают каких-либо признаков отзывчивости на известь при их природной величине pH 5,6.

Необходимо строго учитывать требования возделываемых культур. Так, чайный куст предпочитает кислые красноземы и желтоземно-подзолистые почвы, известкование угнетает эту культуру. Внесение извести отрицательно влияет на лен, картофель (подробности ) и другие растения. Наиболее хорошо отзываются на известь бобовые культуры, которые угнетаются на кислых почвах.

Проблема же продуктивности растений и здоровья животных (второй уровень) чаще всего возникает при рН = 7 и более. Кроме того, почвы различаются по скорости и степени отзывчивости на известь. Например, согласно М. Р. Sheriff (1979), чтобы изменить pH с 5 до 6 для легких почв, ее требуется около 5 т/га, а для тяжелой глинистой почвы в 2 раза большее количество. Важно учитывать также содержание карбоната кальция в известковом материале, а также рыхлость породы, тонину ее помола и т. д. С агрохимической точки зрения весьма важно учитывать мобилизацию и иммобилизацию макро — и микроэлементов в почве под действием известкования. Установлено, что известь мобилизует молибден, который в избыточных количествах может отрицательно влиять на рост растений и здоровье животных, но одновременно наблюдаются симптомы недостаточности меди у растений и скота.

Применение удобрений может не только мобилизовывать отдельные питательные элементы почвы, но и связывать их, превращая в недоступную для растений форму. Исследования, проведенные в нашей стране и за рубежом, показывают, что одностороннее использование высоких доз фосфорных удобрений часто значительно снижает содержание подвижного цинка в почве, вызывая цинковое голодание растений, что отрицательно сказывается на количестве и качестве урожая. Поэтому применение высоких доз фосфорных удобрений часто вызывает необходимость внесения цинкового удобрения. Больше того, внесение одного фосфорного или цинкового удобрения может не дать эффекта, а совместное их применение привести к значительному положительному их взаимодействию.

Можно привести немало примеров, свидетельствующих о положительном и отрицательном взаимодействии макро- и микроэлементов. Во Всесоюзном научно-исследовательском институте сельскохозяйственной радиологии изучали влияние минеральных удобрений и известкования почвы доломитом на поступления радионуклида стронция (90 Sr) в растения. Содержание 90 Sr в урожае ржи, пшеницы и картофеля под влиянием полного минерального удобрения снижалось в 1,5-2 раза по сравнению с неудобренной почвой. Наименьшее содержание 90 Sr в урожае пшеницы было в вариантах с высокими дозами фосфорных и калийных удобрений (N 100 P 240 K 240), а в клубнях картофеля - при внесении высоких доз калийных удобрений (N 100 P 80 K 240). Внесение доломита снизило накопление 90 Sr в урожае пшеницы в 3-3,2 раза. Внесение полного удобрения N 100 P 80 K 80 на фоне известкования доломитом уменьшало накопление радиостронция в зерне и соломе пшеницы в 4,4-5 раз, а при дозе N 100 P 240 K 240 - в 8 раз по сравнению с содержанием без известкования.

Ф. А. Тихомиров (1980) указывает на четыре фактора, влияющие на размеры выноса радионуклидов из почв урожаем растений: биогеохимические свойства техногенных радионуклидов, свойства почвы, биологические особенности растений и агрометеорологические условия. Например, из пахотного слоя типичных почв европейской части СССР выводится в результате миграционных процессов 1-5% содержащегося в нем 90 Sr и до 1 % 137 Cs; на легких почвах скорость удаления радионуклидов из верхних горизонтов существенно выше, чем на тяжелых. Лучшая обеспеченность растений питательными элементами и их оптимальное соотношение снижают поступление радионуклидов в растения. Культуры с глубоко проникающими корневыми системами (люцерна) меньше накапливают радионуклидов, чем с поверхностными корневыми системами (райграс).

На основе экспериментальных данных в лаборатории радиоэкологии МГУ научно обоснована система агромероприятий, реализация которых существенно снижает поступление радионуклидов (стронция, цезия и др.) в продукцию растениеводства. Эти мероприятия включают: разбавление поступающих в почву радионуклидов в виде практически невесомых примесей их химическими аналогами (кальций, калий и др.); уменьшение степени доступности радионуклидов в почве внесением веществ, переводящих их в менее доступные формы (органическое вещество, фосфаты, карбонаты, глинистые минералы); заделка загрязненного слоя почвы в подпахотный горизонт за пределы зоны распространения корневых систем (на глубину 50-70 см); подбор культур и сортов, накапливающих минимальные количества радионуклидов; размещение на загрязненных почвах технических культур, использование этих почв под семенные участки.

Эти мероприятия могут быть использованы и для снижения загрязнения сельскохозяйственной продукции и токсическими веществами нерадиоактивной природы.

Исследованиями Е. В. Юдинцевой и др. (1980) также установлено, что известковые материалы снижают накопление 90 Sr из дерново-подзолистой супесчаной почвы в зерне ячменя примерно в 3 раза. Внесение повышенных доз фосфора на фоне доменных шлаков снижало содержание 90 Sr в соломе ячменя в 5-7 раз, в зерне - в 4 раза.

Под влиянием известковых материалов содержание цезия (137 Cs) в урожае ячменя снижалось в 2,3-2,5 раза по сравнению с контролем. При совместном внесении высоких доз калийных удобрений и доменных шлаков содержание 137 Cs в соломе и зерне снижалось в 5-7 раз по сравнению с контролем. Действие извести и шлаков на уменьшение накопления радионуклидов в растениях более резко выражено на дерново-подзолистой почве, чем на серой лесной.

Исследованиями ученых США установлено, что при использовании для известкования Ca(OH) 2 токсичность кадмия снижалась в результате связывания его ионов, применение же для известкования CaCO 3 было неэффективным.

В Австралии изучали влияние двуокиси марганца (MnO 2) на поглощение свинца, кобальта, меди, цинка и никеля растениями клевера. Установлено, что при добавлении в почву двуокиси марганца сильнее снижалось поглощение свинца и кобальта и в меньшей степени никеля; на поглощение же меди и цинка MnO 2 оказывала незначительное влияние.

В США также были проведены исследования по влиянию различного содержания свинца и кадмия в почве на поглощение кукурузой кальция, магния, калия и фосфора, а также на сухую массу растений.

Из данных таблицы видно, что кадмий оказывал негативное влияние на поступление всех элементов в 24-дневные растения кукурузы, а свинец замедлял поступление магния, калия и фосфора. Кадмий также отрицательно влиял на поступление всех элементов в 31-дневные растения кукурузы, а свинец оказывал положительное действие на концентрацию кальция и калия и отрицательное - на содержание магния.

Эти вопросы имеют важное теоретическое и практическое значение, особенно для земледелия в индустриально развитых районах, где увеличивается накопление ряда микроэлементов, в том числе и тяжелых металлов. В то же время возникает необходимость в более глубоком изучении механизма взаимодействия различных элементов на поступление их в растение, на формирование урожая и качество продукции.

В университете штата Иллинойс (США) также изучали влияние взаимодействия свинца и кадмия на поглощение их растениями кукурузы.

У растений отмечена определенная тенденция повышать поглощение кадмия в присутствии свинца; почвенный кадмий, наоборот, снижал поглощение свинца в присутствии кадмия. Оба металла в испытанных концентрациях подавляли вегетативный рост кукурузы.

Представляют интерес выполненные в ФРГ исследования по влиянию хрома, никеля, меди, цинка, кадмия, ртути и свинца на поглощение фосфора и калия яровым ячменем и перемещение этих питательных элементов в растении. В исследованиях были использованы меченые атомы 32 Р и 42 К. Тяжелые металлы в питательный раствор добавляли в концентрации от 10 -6 до 10 -4 мол/л. Установлено значительное поступление тяжелых металлов в растение с повышением их концентрации в питательном растворе. Все металлы оказывали (в разной мере) ингибирующее действие как на поступление фосфора и калия в растения, так и на перемещение их в растении. Ингибирующее действие на поступление калия проявлялось в большей мере, чем фосфора. Кроме того, перемещение обоих питательных элементов в стебли подавлялось сильнее, чем поступление в корни. Сравнительное действие металлов на растение происходит в следующем нисходящем порядке: ртуть → свинец → медь → кобальт → хром → никель → цинк. Этот порядок соответствует электрохимическому ряду напряжений элементов. Если действие ртути в растворе отчетливо проявлялось уже при концентрации 4∙10 -7 мол/л (= 0,08 мг/л), то действие цинка - только при концентрации выше 10 -4 мол/л (=6,5 мг/л).

Как уже отмечалось, в индустриально развитых районах происходит накопление в почве различных элементов, в том числе тяжелых металлов. Вблизи крупных автострад Европы и Северной Америки весьма ощутимо влияние на растения соединений свинца, поступающих в воздух и почву с выхлопными газами. Часть соединений свинца попадает через листья в ткани растений. Многочисленными исследованиями установлено повышенное содержание свинца в растениях и почве на расстоянии до 50 м в сторону от автострад. Отмечены случаи отравления растений в местах особенно интенсивного воздействия выхлопных газов, например елей на расстоянии до 8 км от крупного Мюнхенского аэропорта, где производится около 230 вылетов самолетов в день. В хвое ели содержалось свинца в 8-10 раз больше, чем в хвое в незагрязненных районах.

Соединения других металлов (меди, цинка, кобальта, никеля, кадмия и др.) заметно влияют на растения вблизи металлургических предприятий, поступая как из воздуха, так и из почвы через корни. В таких случаях особенно важно изучение и внедрение приемов, предотвращающих избыточные поступления токсических элементов в растения. Так, в Финляндии определяли содержание свинца, кадмия, ртути, меди, цинка, марганца, ванадия и мышьяка в почве, а также салате, шпинате и моркови, выращиваемых вблизи промышленных объектов и автострад и на чистых участках. Исследовали также дикорастущие ягоды, грибы и луговые травы. Установлено, что в зоне действия промышленных предприятий содержание свинца в салате колебалось от 5,5 до 199 мг/кг сухой массы (фон 0,15-3,58 мг/кг), в шпинате - от 3,6 до 52,6 мг/кг сухой массы (фон 0,75-2,19), в моркови - 0,25-0,65 мг/кг. Содержание свинца в почве составило 187-1000 мг/кг (фон 2,5-8,9). Содержание свинца в грибах достигало 150 мг/кг. По мере удаления от автострад содержание свинца в растениях снижалось, например, в моркови с 0,39 мг/кг на расстоянии 5 м до 0,15 мг/кг на расстоянии 150 м. Содержание кадмия в почве менялось в пределах 0,01-0,69 мг/кг, цинка - 8,4-1301 мг/кг (фоновые концентрации соответственно были 0,01-0,05 и 21,3-40,2 мг/кг). Интересно заметить, что известкование загрязненной почвы снижало содержание кадмия в салате с 0,42 до 0,08 мг/кг; калийные же и магниевые удобрения не оказывали на него заметного влияния.

В зонах сильного загрязнения содержание цинка в травах было высокое - 23,7-212 мг/кг сухой массы; содержание мышьяка в почве 0,47-10,8 мг/кг, в салате - 0,11-2,68, шпинате - 0,95-1,74, моркови - 0,09-2,9, лесных ягодах - 0,15-0,61, грибах - 0,20-0,95 мг/кг сухого вещества. Содержание ртути в окультуренных почвах было 0,03-0,86 мг/кг, в лесных почвах - 0,04-0,09 мг/кг. Заметных различий в содержании ртути в разных овощах не обнаружено.

Отмечается действие известкования и затопления полей на снижение поступления кадмия в растения. Например, содержание кадмия в верхнем слое почвы рисовых полей в Японии составляет 0,45 мг/кг, а его содержание в рисе, пшенице и ячмене на незагрязненной почве соответственно 0,06 мг/кг, 0,05 и 0,05 мг/кг. Наибольшей чувствительностью к кадмию отличается соя, у которой снижение роста и массы зерен происходит при содержании в почве кадмия 10 мг/кг. Накопление же кадмия в растениях риса в количестве 10-20 мг/кг вызывает подавление их роста. В Японии ПДК кадмия в зерне риса - 1 мг/кг.

В Индии существует проблема токсичности меди вследствие большого накопления ее в почвах, расположенных около медных рудников в Бихаре. Токсичный уровень цитрат ЭДТА-Си > 50 мг/кг почвы. Ученые Индии изучали также влияние известкования на содержание меди в дренажной воде. Нормы извести были 0,5, 1 и 3 от требуемой для известкования. Исследования показали, что известкование не решает проблему токсичности меди, поскольку 50-80% выпавшей в осадок меди оставалось в доступной для растений форме. Содержание доступной меди в почвах зависело от нормы известкования, первоначального содержания меди в дренажной воде и свойств почвы.

Исследованиями установлено, что типичные симптомы недостаточности цинка наблюдались у растений, выращиваемых в питательной среде, содержащей этого элемента 0,005 мг/кг. Это приводило к подавлению роста растений. В то же время цинковая недостаточность у растений способствовала значительному увеличению адсорбции и транспорта кадмия. С повышением концентрации цинка в питательной среде поступление кадмия в растения резко снижалось.

Большой интерес представляет изучение взаимодействия отдельных макро — и микроэлементов в почве и в процессе питания растений. Так, в Италии изучали влияние никеля на поступление фосфора (32 Р) в нуклеиновые кислоты молодых листьев кукурузы. Опыты показали, что низкая концентрация никеля стимулировала, а высокая подавляла рост и развитие растений. В листьях растений, выращиваемых при концентрации никеля 1 мкг/л, поступление 32 Р во все фракции нуклеиновых кислот было более интенсивное, чем на контроле. При концентрации никеля 10 мкг/л поступление 32 Р в нуклеиновые кислоты заметно снижалось.

Из многочисленных данных исследований можно сделать вывод, что для предотвращения отрицательного влияния удобрений на плодородие и свойства почвы научно обоснованная система удобрения должна предусматривать недопущение или ослабление возможных негативных явлений: подкисления или подщелачивания почвы, ухудшения агрохимических ее свойств, необменного поглощения биогенных элементов, химического поглощения катионов, чрезмерной минерализации гумуса почвы, мобилизации повышенного количества элементов, приводящей к токсическому их действию и т. д.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .



Случайные статьи

Вверх