Воздушная прослойка в телефоне. Все, что нужно знать об экранах смартфонов

Современный рынок мобильных устройств переполнен количеством разнообразных изделий, что отличаются друг от друга на аппаратном или программном уровне. Если на заре телефонии мобильные подбирались преимущественно по принципу лучшего дизайна, то у большинства сегодняшних смартфонов, как минимум, схожий внешний вид и достаточная оригинальность. В связи с этим выбор делается в пользу эксплуатационных и функциональных особенностей.

Обратите внимание

Один из важных критериев выбора ставит перед покупателем вопрос о том, какой экран лучше для смартфона и насколько он будет удобен в использовании. Далее в статье детальнее рассмотрены физико-технические характеристики типовых дисплеев с доступным и понятным анализом, что упростит выбор смартфона по данному критерию.

Разновидности дисплеев (матриц)

На сегодняшний день широкую популярность приобрели следующие функциональные типы матриц:

  • TN+film (далее TN);
  • AMOLED.

Первые два типа привычно называть жидкокристаллическими (ЖК), поскольку они работают на базе жидких кристаллов. Что касается AMOLED, то это технология, структурно состоящая из органических светодиодов (OLED).

Важно знать

Очень часто в различных обзорах присутствует информация о TFT-матрицах. Изначально сравнение TFT-технологии (thin-film transistor) с любой из вышеперечисленных является неверным. TFT – это основа для разработки других технологий.

Теперь при рассмотрении того, какая технология экрана смартфона лучше, можно говорить, что в любом случае рассматриваются TFT-дисплеи. Ранее при их изготовлении задействовали аморфный кремний, но при обновлении технологий производители пришли к использованию поликристаллического материала (LTPS-TFT). Ключевые преимущества:

  • снижение энергопотребления;
  • минимизация физических размеров отдельных элементов;
  • увеличение параметра плотности пикселей (ppi – количество пикселей на дюйм дисплея).

Будет полезным

«Первопроходцем» на базе матрицы LTPS-TFT стал OnePlus One (2014 год), за все свои характеристики прозванный «убийцей флагманов».

Чтобы понять, какой экран смартфона лучше – IPS или AMOLED, а также чтобы учесть их ключевые отличия от дисплеев, созданных по технологии TN, необходимо детальнее рассмотреть каждый из видов.

ЖК дисплеи (LCD)

Независимо от того, какая именно из матриц (TN или IPS) рассматривается, принцип действия у LCD-дисплеев идентичен:

  • в молекулы жидких кристаллов подаётся ток;
  • его сила влияет на яркость субпикселей;
  • излучаемый свет проходит через светофильтры, что позволяет окрасить волну в определенный цвет.

Обратите внимание

Оценка того, какой экран лучше для смартфона, выполняется в соответствии с современными реалиями производства по данному направлению.

TN+film

Матрица TN стала началом истории ЖК-дисплеев. Она обладает простейшими техническими характеристиками:

  • малые углы обзора, не превышающий 60° от вертикального взгляда на плоскость экрана, с инвертированием изображения при незначительных отклонениях;
  • недостаточная контрастность;
  • плохая цветопередача.

Важно знать

Свою актуальность данная технология потеряла, хотя и продолжает использоваться в наиболее бюджетных моделях девайсов.

IPS

Более двух десятилетий назад была представлена новая технология IPS. По сей день её регулярно модифицируют с целью улучшения и оптимизации. Популярными являются дисплеи на базе AH-IPS (производитель LG) и PLS (производитель SAMSUNG).

Обратите внимание

Указанные версии модификации так схожи между собой, что между компаниями началось судебное разбирательство.

Если не вдаваться в детали вопроса, какая технология экрана смартфона лучше и почему, можно выделить следующие возможные (достигаются при максимальной оптимизации технологии) качественные характеристики современных IPS-матриц:

  • широкие углы обзора (значение близится к 180°) с минимумом искажений даже при самом сильном отклонении;
  • высококачественная цветопередача;
  • повышенная плотность пикселей, увеличиваемая с каждой новой (улучшенной) модификацией.

Производители редко делятся сведениями об особенностях IPS-матрицы, установленной в их продукте. Однако различия между дисплеями из разных ценовых категорий можно увидеть невооруженным взглядом, а потому пользователь обязан знать, какой тип экрана смартфона лучше.
Самые дешевые IPS-матрицы обладают следующими недостатками:

  • картинка выцветает при наклоне экрана;
  • точность цветопередачи в целом не оптимальна: может прослеживаться «блёклость» или «кислотность».

Важно знать

OLED-технология

Однозначно выигрывает любую конкуренцию в вопросе того, какая технология экрана смартфона лучше, AMOLED-матрица. Данный тип дисплея строится на технологии OLED, подразумевающей использование органических светодиодов. Первым «победным» качественным отличием таких экранов можно считать отсутствие необходимости в подсветке пикселей. Благодаря этому функциональные элементы уменьшаются в размерах, толщина матрицы минимизируется. Однако это не единственный аргумент в споре о том, какой экран смартфона лучше – IPS или AMOLED.

Обратите внимание

В любом случае технология AMOLED-дисплея строится на базе TFT, поскольку её сочетание с OLED позволяет осуществлять индивидуальное управление над каждым из субпикселей. Благодаря такой особенности можно полностью отключать субпиксели, передавая максимально глубокий черный цвет.

Среди значимых преимуществ над дисплеями IPS стоит отметить уменьшенную цветопередачу, что реализуется именно за счет вышеописанной возможности отключения субпикселей. При задействовании темных цветов в оформлении интерфейса смартфона потребление заряда снижается в несколько раз.

Другое качественное преимущество сразу же стало функциональной проблемой. В процессе эксплуатации самых первых AMOLED-матриц была замечена чрезмерная насыщенность цветов, которая не являлась естественной. Проблему производители быстро решили, но даже сегодня существуют смартфоны, в которых приходится выполнять ручную настройку насыщенности, чтобы сделать цветопередачу более естественной (ближе к той, что выдают IPS-дисплеи).

Важно знать

Существует у AMOLED-технологии и ограничение, связанное с функционалом отдельных элементов, тех самых органических светодиодов. В зависимости от того, какие цвета чаще воспроизводятся каждым из них, возникают перепады в предельном сроке службы таких элементов. К примеру, в районе интерфейсной панели уведомлений такие светодиоды выгорают быстрее, сохраняя за собой остаточное изображение. Правда, и эту проблему производители решили, увеличив минимальный срок службы элемента до 3 лет (речь о времени беспрерывной активности).

По итогам всего вышесказанного, можно сделать ряд выводов:

  • высочайшее качество обеспечивает OLED-технология;
  • продолжает развиваться и является наиболее актуальной с точки зрения показателей «цена-качество» IPS-технология;
  • морально устарела и не способна к конкуренции – TN+film.

Естественно, за пользователем остаётся право выбора, но ключевые аргументы можно подчеркнуть из данного материала. Далее будут представлены сведения о нескольких смешных особенностях современных дисплеев и перспективах развития данной сферы производства, что позволит полностью осознать, какой тип экранов смартфонов лучше.

Также выбирать, какой экран лучше для смартфона, стоит на основании следующих смежных параметров:

  • Отсутствие воздушной прослойки между сенсором и дисплеем. Максимально увеличивается яркость и углы обзора, а также улучшается цветопередача. Естественно, уменьшается общая толщина всей системы передачи изображения (лучше всего получается у Samsung). Проблема: сложность замены модуля.
  • Форма дисплея. Началось всё с появления 2,5D-стёкол – загнутых по краям. Передаваемое изображения кажется безграничным, что усиливает ощущения зрительного аппарата пользователя. В современных модификациях речь идёт уже о загибании всего модули вместе с сенсором – безрамочная технология.
  • Усиленная чувствительно сенсора. Лучшие вариации позволяют работать со смартфоном не только рукой. Когда доступ к интерфейсу устройства возможен даже в перчатках, вопрос о том, какой экран лучше для смартфона, кажется нецелесообразным.
  • Разрешение дисплея. Данный параметр указывает на количество пикселей относительно реальных физических размеров дисплея. Его можно ассоциировать с плотностью пикселей в процессе выбора, если исходных данных о конкретной модели меньше, чем нужно для аргументированного её приобретения. В данном случае всё просто: «Какое разрешение экрана лучше для смартфона?» – «Наибольшее».
  • Размер диагонали. Данный показатель не должен быть в приоритете над разрешением и плотностью пикселей, поскольку его доминация над указанными параметрами может привести к возникновению видимых дефектов. С эксплуатационной точки зрения, чем больше дисплей, тем сложнее его использовать одной рукой.

Цвет излучения такого элемента подбирается посредством изменения размеров и материала изготовления квантовой точки (в неограниченном диапазоне). На сегодняшний день это самая дорогостоящая технология с максимально возможными из доступных на рынке качеств.

Говоря о том, какое разрешение экрана лучше для смартфона, естественно, можно отдавать однозначное предпочтение в пользу QLED. Дисплеи, созданные по этой технологии, уже давно имеют разрешение ULTRA HD и отмечаются всеми возможными преимуществами. Однако среднестатистический пользователь будет ориентироваться на ценовые показатели, а потому лучше придерживаться ранее данных советов относительно плотности пикселей и прочих параметров дисплея.

Смартфон может обладать мощной начинкой и делать превосходные снимки, но пользователь все равно не будет им полностью доволен, если качество экрана оставляет желать лучшего. К сожалению, в плане характеристик дисплея многие покупатели — полные профаны. Поэтому так важно рассмотреть, какие виды дисплеев смартфонов встречаются и каким параметрам нужно уделить внимание при выборе гаджета.

Ранее все дисплеи сенсорных телефонов классифицировались на:

  1. Емкостные . Принцип действия таков: палец пользователя передает заряд, а ПО устройства вычисляет, в какой именно области экрана произошло изменение.
  2. Резистивные . За экраном находятся две металлические пластины. Когда первая прижимается ко второй, смартфон реагирует. К смартфонам с резистивными экранами часто прилагались .

Использование резистивных дисплеев было неудобным, так как при нажатии приходилось прикладывать силу. Резистивные дисплеи окончательно исчезли с витрин в 2011 году, и последней «ласточкой» стала модель Samsung S 5230 Star , некогда очень популярная среди представительниц прекрасного пола.

Распространенные технологии дисплеев

Встречаются такие типы дисплеев:

TFT

Экраны, изготовленные по этой технологии, монтируются в бюджетные гаджеты. Качество изображения может быть очень приличным, но некоторые недостатки все равно будут бросаться в глаза (например, минимальные углы обзора). Особенность TFT дисплеев заключается в том, что они не способны выдавать идеальный черный цвет – только темно-серый.

IPS

Усовершенствованная технология TFT, которая гарантирует высокую контрастность, насыщенные цвета (в частности, черный и белый), большие углы обзора. В последнее время телефонов все более распространены – даже китайские продавцы отказываются от технологии TFT.

AMOLED

Матрица, состоящая из органических светодиодов. Такая технология не только обеспечивает более яркие цвета, чем IPS, но также позволяет смартфону дольше проработать в автономном режиме, потому как черный цвет образуется за счет отключения части светодиодов. обычно можно встретить на Самсунгах, что неудивительно, ведь именно корейская компания их и разработала.

SuperAMOLED

Позже усовершенствовала устройство дисплеев AMOLED, убрав воздушную прослойку между экраном и сенсорным слоем. За счет этого повысились детализация изображения, насыщенность красок, да и сам дисплей стал тоньше. Любопытно, что в народе экраны Super AMOLED прозвали «кислотными» из-за чрезмерной яркости.

SuperLCD

Такие экраны на смартфонах встречаются редко – одним из гаджетов с подобным дисплеем был One X. Технология SLCD обеспечивает теплые и насыщенные цвета, но сажает смартфон быстрее, чем AMOLED и IPS.

Что дает разрешение экрана?

Любой экран состоит из огромного количества «квадратиков» — пикселей, которые плотно прилегают друг к другу. Каждый из пикселей в свою очередь состоит из 3 подпикселей (субпикселей): красного (R), зеленого (G), голубого (B). По мере поступления питания они смешиваются в разных пропорциях и дают некоторый цвет. Посчитать количество пикселей на экране устройства можно путем умножения двух параметров разрешения дисплея: высоты и ширины. Например, дисплей HD (1280 * 720 ) состоит из 921600 пикселей. То есть чем выше разрешение, тем более четкой окажется картинка. На гаджетах с минимальным разрешением «квадратики» будут видны невооруженным глазом.

Существует и другой показатель – DPI, отражающий плотность точек на дюйм экрана. Показателю DPI при выборе гаджета нужно уделить даже большее внимание, чем разрешению, ведь размеры экранов смартфонов разные. Обратите внимание, что человек с превосходным и в идеальных условиях способен различить плотность максимум до 350 DPI. В реальных условиях хватит 250 DPI. Это значит, что для смартфона с диагональю в 4.5-5 дюймов дисплея с разрешением HD предостаточно. Покупка гаджета с более «крутыми» характеристиками дисплея приведет только к негативным последствиям: во-первых, покупатель переплатит, во-вторых, смартфон будет быстрее разряжаться.

Экраны каких размеров лучше?

Визионер Apple Стив Джобс определил, что наиболее подходящая диагональ экрана для смартфона – 3.5 дюймов; именно такую имели популярные модели 4 и 4S. При диагонали в 3.5 дюйма средний пользователь может дотянуться большим пальцем руки (которой держит гаджет) даже до самой отдаленной точки дисплея.

Однако найти смартфон с такой диагональю сейчас можно только на витрине с бюджетными моделями. Тенденция увеличения размеров дисплея продолжает набирать ход – крупные компании уже выпускают устройства, относящиеся к классу смартфонов, с экранами аж в 6 дюймов! Для комфортной же работы достаточно 4.7-5 дюймов – подобным гаджетом все еще можно управлять одной рукой. Смартфон большего размера будет доставлять неудобства как при пользовании, так и при хранении в кармане.

Заключение

При выборе смартфона нужно помнить, что гнаться за выдающимися характеристиками дисплея бессмысленно – никаких видимых преимуществ обладатель устройства с разрешением экрана 4K не получит. Напротив, пользователь будет обречен на постоянное ношение ЗУ, так как длительность автономной работы смартфона напрямую зависит от параметров дисплея.

Технологии дисплеев смартфонов на месте не стоят, они постоянно совершенствуются. Сегодня существует 3 основных типа матриц: TN, IPS, AMOLED. Часто споры идут по поводу преимуществ и недостатков матриц IPS и AMOLED, их сравнения. А вот TN-экраны уже давно не в моде. Это старая разработка, которая сейчас практически не используется в новых телефонах. Ну, а если и используется, то лишь в очень дешевых бюджетниках.

Сравнение TN матрицы и IPS

Матрицы TN появились в смартфонах первыми, поэтому они самые примитивные. Главный плюс этой технологии – дешевизна. Себестоимость TN дисплея на 50% ниже по сравнению со себестоимостью других технологий. Такие матрицы обладают рядом недостатков: небольшие углы обзора (не более 60 градусов. Если больше, картинка начинает искажаться), плохая цветопередача, низкая контрастность. Логика производителей отказываться от этой технологии ясна – недостатков очень много, и все они серьезные. Тем не менее есть одно достоинство: время отклика. В TN-матрицах время отклика всего 1 мс, хотя в IPS-экранах время отклика обычно 5-8 мс. Но это всего лишь один плюс, который нельзя поставить в противовес всем минусам. Ведь даже 5-8 мс достаточно для отображения динамических сцен и в 95% случаев пользователь не заметит разницу между временем отклика 1 и 5 мс. На фото ниже разница отчетливо видна. Обратите внимание на искажение цвета под углом на TN матрице.

В отличие от TN, матрицы IPS показывают высокую контрастность и отличаются огромными углами обзора (иногда даже максимальными). Именно этот тип является самым распространенным, и иногда они обозначаются как SFT-матрицы. Есть множество модификаций этих матриц, поэтому при перечислении плюсов и минусов нужно иметь в виду какой-либо конкретный тип. Поэтому ниже для перечисления достоинств мы будем иметь ввиду самую современную и дорогую IPS-матрицу, а для перечисления минусов самую дешевую.

Плюсы:

  1. Максимальные углы обзора.
  2. Высокая энергоэффективность (низкое потребление энергии).
  3. Точная цветопередача и высокая яркость.
  4. Возможность использовать высокое разрешение, что даст большую плотность пикселей на дюйм (dpi).
  5. Хорошее поведение на солнце.

Минусы:

  1. Более высокая цена по сравнению с TN.
  2. Искажение цветов при большом наклоне дисплея (все же, углы обзора не всегда максимальные на некоторых типах).
  3. Перенасыщение цвета и недостаточная насыщенность.

Сегодня большинство телефонов обладают IPS-матрицами. Гаджеты с дисплеями TN применяются разве что в корпоративном секторе. Если компания хочет сэкономить деньги, то она может заказать мониторы или, например, телефоны для своих сотрудников подешевле. В них могут быть TN-матрицы, но для себя никто не покупает такие устройства.

Amoled и SuperAmoled экраны

Чаще всего в смартфонах Samsung применяются SuperAMOLED матрицы. Именно этой компании принадлежит данная технология, и многие другие разработчики пытаются выкупить или заимствовать ее.

Главной особенностью AMOLED матриц является глубина черного цвета. Если рядом положить AMOLED дисплей и IPS, то черный цвет на IPS будет казаться светлым по сравнению с AMOLED. Самые первые такие матрицы имели неправдоподобную цветопередачу и не могли похвастаться глубиной цвета. Часто на экране присутствовала так называемая кислотность или чрезмерная яркость.

Но разработчики в Samsung исправили эти недостатки в SuperAMOLED экранах. Эти обладают конкретными достоинствами:

  1. Небольшое энергопотребление;
  2. Лучшая картинка по сравнению с теми же IPS матрицами.

Недостатки:

  1. Более высокая стоимость;
  2. Необходимость калибровки (настройки) дисплея;
  3. Редко может быть разный срок работы диодов.

На самые ТОПовые флагманы устанавливаются AMOLED и SuperAMOLED матрицы из-за лучшего качества картинки. Второе место занимают IPS-экраны, хотя часто невозможно отличить по качеству картинки AMOLED и IPS матрицу. Но в данном случае важно сравнивать подтипы, а не технологии в целом. Поэтому нужно быть на чеку при выборе телефона: часто в рекламных постерах указывают технологию, а не конкретный подтип матрицы, а технология не играет ключевой роли в итоговом качестве картинки на дисплее. НО! Если указывается технология TN+film, то в этом случае стоит сказать “нет” такому телефону.

Инновации

Удаление воздушной прослойки OGS

Инженеры с каждым годом представляют технологии улучшения изображения. Некоторые из них забываются и не применяются, а некоторые производят фурор. Технология OGS является как раз таковой.

Стандартно экран телефона состоит из защитного стекла, непосредственно самой матрицы и воздушной прослойкой между ними. OGS позволяет избавиться от лишнего слоя – воздушной прослойки – и сделать матрицу частью защитного стекла. В результате изображение как будто находится на поверхности стекла, а не скрыто под ним. Эффект улучшения качества отображения налицо. За последние пару-тройку лет технология OGS неофициально считается стандартом для любых более-менее нормальных телефонов. Не только дорогие флагманы оснащаются OGS-экранами, но и бюджетники и даже некоторые совсем дешевые модели.

Изгиб стекла экрана

Следующий интересный эксперимент, который позже стал инновацией – это 2.5D стекло (то есть почти 3D). Благодаря загибам экрана по краям картинка становится более объемной. Если помните, первый смартфон Samsung Galaxy Edge произвел фурор – он первый (или нет?) получил дисплей с 2.5D стеклом, и выглядел он потрясающе. Сбоку даже появилась дополнительная сенсорная панель для быстрого вызова некоторых программ.

У HTC была попытка сделать что-нибудь необычное. Компания создала смартфон Sensation с вогнутым внутрь дисплеем. Таким образом он был защищен от царапин, хотя добиться большей пользы не удалось. Сейчас таких экранов не встретить в силу и без того прочных и невосприимчивых к царапинам защитных стекло Gorilla Glass.

На этом HTC не остановилась. Был создан смартфон LG G Flex, у которого был не только изогнут экран, но и сам корпус. В этом состояла “фишка” устройства, которая тоже не обрела популярность.

Растягивающийся или гибкий экран от Samsung

На средину 2017 года та технология еще не используется ни в одном доступном на рынке телефоне. Однако компания Samsung в видеороликах и на своих презентациях демонстрирует AMOLED-экраны, которые могут растягиваться и затем возвращаться в обратное исходное положение.

Фото гибкого дисплея от Samsung:

Также компания представила демонстрационный видео ролик, где отчетливо видно экран, выгибающийся на 12 мм (как заявляет сама компания).

Вполне возможно, скоро Samsung сделает весьма необычный революционный экран, который поразит весь мир. Это будет революцией в плане разработки дисплеев. Сложно даже представить, насколько далеко компания уйдет вперед с такой технологией. Впрочем, возможно и другие производители (Apple, например) тоже ведут разработки гибких дисплеев, но пока подобных демонстраций от них не было.

Лучшие смартфоны с AMOLED-матрицами

Учитывая то, что технология SuperAMOLED была разработана Samsung, в основном она используется в моделях этого производителя. И вообще, Samsung лидирует в области разработки совершенствования экранов для мобильных телефонов и телевизоров. Это мы уже поняли.

На сегодняшний день самым лучшим дисплеем из всех существующих смартфонов является SuperAMOLED экран в Samsung S8. Это даже подтверждается в отчете DisplayMate. Кто не в курсе, Display Mate – популярный ресурс, анализирующий экраны “от и до”. Многие специалисты используют их результаты тестов в своих работах.

Для определения экрана в S8 пришлось даже ввести новый термин – Infinity Display . Такое название он получил благодаря необычной удлиненной форме. В отличие от предыдущих своих экранов, Infinity Display серьезно доработан.

Вот краткий перечень преимуществ:

  1. Яркость до 1000 нит. Даже на ярком солнце контент будет хорошо читаемым.
  2. Отдельная микросхема для реализации технологии Always On Display. И без того экономичная батарея теперь потребляем еще меньше заряда батареи.
  3. Функция улучшения картинки. В Infinity Display контент без составляющей HDR приобретает ее.
  4. Яркость и цветовые настройки автоматически регулируются в зависимости от предпочтений пользователей.
  5. Теперь тут не один, а два сенсора освещения, что более точно позволяет автоматически регулировать яркость.

Даже по сравнению с Galaxy S7 Edge, у которого был “эталонный” экран дисплей в S8 выглядит лучше (на нем белые цвета являются действительно белыми, а на S7 Edge они уходят в теплые тона).

Но кроме Galaxy S8 есть и другие смартфоны с экранами на базе технологии SuperAMOLED. В основном это, конечно же, модели корейской компании Самсунг. Но также есть и другие:

  1. Meizu Pro 6;
  2. OnePlus 3T;
  3. ASUS ZenFone 3 Zoom ZE553KL – 3 место в ТОПе телефонов Asusu (находится ).
  4. Alcatel IDOL 4S 6070K;
  5. Motorola Moto Z Play и др.

Но стоит отметить, что аппаратная часть (то есть сам дисплей) хоть и играет ключевую роль, но важно еще и ПО, а также второстепенные программные технологии, улучшающие качество картинки. SuperAMOLED дисплеи славятся прежде всего возможностью широко регулировать температуру и цветовые настройки, и если подобных настроек не будет, то смысл использовать эти матрицы слегка пропадает.

LCD, TFT, IPS, AMOLED, P-OLED, QLED – список технологий, по которым изготавливают матрицы смартфонов, постоянно растет. И заблудиться в этих дебрях легко даже гику, не говоря уже о простом пользователе. Сегодня мы доступным языком объясним, в чем между ними разница, а также какими преимуществами и недостатками обладает каждый из них.

Существует две базовые технологии, на основе которых и создается большинство дисплеев современных смартфонов. Это LCD и OLED. Все остальные виды и наименования – это всего лишь их производные. Нам же остается разобраться, какие относятся к первому типу, а какие – ко второму.

LCD

LCD (Liquid Crystal Display) – жидкокристаллические экраны, получившие повсеместное распространение: их используют в телевизорах, мониторах, смартфонах и т.д. Жидкие кристаллы, которые лежат в основе технологии обладают двумя важнейшими свойствами: текучестью и анизотропностью.

Анизотропность – это способность кристалла изменять свои свойства в зависимости от своего расположения в пространстве.

В экранах эта особенность используется для управления светопроводимостью. С помощью транзисторов на ЖК-матрицу подается ток, который изменяет ориентацию кристаллов. Затем на них падает свет, проходящий через несколько фильтров, и в результате на экране появляется пиксель нужного цвета. Отметим, что для всех ЖК-экранов требуется источник подсветки: внешний (например, солнечные лучи) или встроенный (например, светодиоды).

К LCD-матрицам смартфонов относятся: TN, IPS, PLS, а также их многочисленные модификации. Сюда также можно причислить технологию VA/MVA/PVA, которая широкого распространения не получила. Однако прежде чем мы перейдем к видам матриц, необходимо разобраться с аббревиатурой TFT, которая встречается как отдельно, так и в различных сочетаниях, например, TFT LCD или TFT IPS.

TFT (thin-film transistor) – это разновидность LCD-дисплеев, в которых для управления жидкими кристаллами используется активная матрица: в ее конструкцию входят тонкопленочные транзисторы. Сразу стоит сказать, что абсолютно все современные гаджеты с LCD, а также AMOLED-дисплеями имеют активную матрицу: пассивная - практически не используется.

То есть, если мы говорим про IPS, TN или VA /MVA/PVA, то подразумеваем, что все они относятся к TFT LCD дисплеям.

TN+film

TN + film (Twisted Nematic + film) – одна из самых первых технологий изготовления матриц. Свое названием получила за характерное расположение кристаллов, которые закручиваются в спираль. Чаще всего такие матрицы называют просто TN.

Преимущества:

  • малое время отклика – 16 мс (на заре технологии это был рекордный показатель среди всех видов матриц);
  • низкая стоимость производства.

Недостатки:

  • небольшие углы обзора;
  • низкий уровень контрастности;
  • низкий уровень цветопередачи.

IPS

IPS (in-plane switching) – в таких экранах кристаллы при получении электрического импульса не скручиваются в спираль, а поворачиваются перпендикулярно своему начальному положению. Эта особенность позволила увеличить угол обзора практически до максимального – 178 градусов. Таким образом, IPS дисплеи пришли на смену TN, однако и у них есть свои недостатки.

Преимущества:

  • максимальные углы обзора – до 178 градусов;
  • естественная цветопередача, включая практически идеальный черный цвет;
  • высокий уровень контрастности.

Недостатки:

  • высокая стоимость по сравнению с TN;
  • время отклика (в ранних IPS-дисплеях) было выше, чем у TN.

Фирменная разработка Samsung, которая представляет собой улучшенную версию IPS, предназначенную для массового рынка, но по ряду причин неподходящую для профессиональных устройств.

Преимущества:

  • высокая плотность пикселей;
  • широкий угол обзора до 178 градусов;
  • низкое время отклика;
  • низкое энергопотребление;
  • высокая контрастность;
  • более низкая стоимость производства (на 15% ниже по сравнению с IPS-матрицами).

Большинство недостатков IPS-технологии в настоящее время устранены. На скриншотах ниже можно увидеть эволюционный путь, который она успела пройти.

Развитие технологии «super fine TFT» от NEC

Развитие технологии IPS фирмой Hitachi

Развитие технологии IPS фирмой LG

OLED

В OLED-матрицах (Organic light-emitting diode) вместо жидких кристаллов используются органические светодиоды, которые не требует подсветки. При подаче на них электрических импульсов они сами начинают светиться.

В свою очередь OLED по способу управлению диодами делится на PMOLED (Passive Matrix) и AMOLED (Active Matrix), причем первая в новых смартфонах практически не используется.

В AMOLED для управления диодами используется вышеупомянутые тонкопленочные резисторы (технология TFT).

Разновидностью AMOLED матрицы являются SUPER AMOLED (маркетинговая "фишка" компании Samsung) – в подобных экранах отсутствует воздушная прослойка между сенсорным слоем экрана и матрицей. В случае с IPS-матрицами такая «безвоздушная» технология называется OGS (One Glass Solution). Хотя это скорее конструктивная особенность и выделять в отдельный тип матриц SUPER AMOLED нельзя.

Еще один подвид AMOLED это P-OLED матрицы. Они отличаются наличием пластиковой подложки экрана (в AMOLED используется стеклянная). Благодаря этому у производителей появилась возможность создавать изогнутые экраны.

Преимущества:

  • меньшие габариты и вес по сравнению с LCD-дисплеями;
  • низкое энергопотребление;
  • не требуют подсветки;
  • высокая контрастность;
  • мгновенный отклик;
  • возможность изменять форм-фактор экранов (гибкие дисплеи);
  • большие углы обзора близкие к максимальным (180 градусов);
  • большой диапазон рабочих температур (от -40 градусов до +70).

Недостатки:

  • маленький по сравнению с ЖК-дисплеями срок службы;
  • высокая стоимость;
  • чувствительность к воздействию влаги.

Однако по мере развития технологии, минусы OLED-дисплеев постепенно исчезают.

" Уникальные" Retina и Super Retina дисплеи, которыми оснащаются iPhone, к технологии производства матриц никакого отношения не имеют. Это всего лишь маркетинговый ход компании. На самом деле в «яблочных» смартфонах используются все те же IPS и OLED-матрицы.

Заключение

На данный момент разница (цветопередача, контрастность, углы обзора, энергоэффективность и др. показатели) между LCD и OLED-экранами стремительно сокращается. Однако намечается следующий тренд: ЖК-экраны постепенно устаревают и уступают OLED-дисплеям. А те в свою очередь эволюционируют в и QLED-дисплеи. Пока эти технологии дороги в производстве и находятся в зачаточном состоянии, но возможно уже в ближайшем будущем вся электроника будет оснащаться именно такими экранами.

LTPS (низкотемпературная поликремневая) технология - это новейший производственный процесс изготовления TFT ЖКИ. В этой технологии используется лазерный отжиг, который позволяет производить кристаллизацию кремниевой пленки при температуре менее 400°C.

Поликристаллический кремний - материал на основе кремния, который содержит множество кристаллов кремния размером от 0.1 до нескольких микрон. При производстве полупроводников поликристаллический кремний обычно изготавливается при помощи LPCVD (Low Pressure Chemical Vapor Deposition - химическое осаждение при низком давлении из газообразной фазы), а затем отжигается при температуре более 900 C. Это так называемый SPC (Solid Phase Crystallization - кристаллизация твердой фазы) метод. Очевидно, что такой метод не может быть применен при производстве индикаторных панелей, так как температура плавления стекла порядка 650 C. Поэтому LTPS технология - новая технология, предназначенная для производства ЖКИ панелей.

На приведенном ниже рисунке показаны структуры однокристального, аморфного и поликристаллического кремния.

Теперь рассмотрим несколько методов формирования LTPS пленки на стеклянной или пластиковой подложке, которые используются в настоящее время:

1. MIC (Metal Induced Crystallization - кристаллизация, вызываемая металлом): Это разновидность SPC метода, но, по сравнению с обычным SPC методом, он позволяет получить поликристаллический кремний при более низкой температуре (приблизительно 500 - 600 C). Достигается это за счет металлизации пленки перед отжигом. Металл позволяет снизить энергию, необходимую для активизации процесса кристаллизации.

2. Cat-CVD: При этом методе осаждается уже поликристаллическая пленка, которая в дальнейшем не подвергается термической обработке (отжигу). В настоящее время уже имеется возможность выполнять осаждение при температуре ниже 300C. Однако, механизм выращивания при каталитическом взаимодействии приводит к растрескиванию смеси SiH4-H2.

3. Лазерный отжиг: Это - самый популярный метод, используемый в настоящее время. В качестве источника энергии используется эксимерный лазер. Он нагревает и расплавляет a-Si с низким содержанием водорода. После этого кремний повторно кристаллизуется в виде поликристаллической пленки.

Подготовка LTPS пленки очевидно более сложна, чем a-Si пленки, но LTPS TFT имеют в 100 раз большую надежность, чем тонкопленочные транзисторы, изготовленные по a-Si технологии, а кроме того LTPS технология позволяет на стеклянной подложке изготавливать в едином цикле и КМОП интегральные схемы. p-Si технология имеет следующие основные преимущества по сравнению с a-Si технологией:

1. Обеспечивает возможность изготовления на стеклянной подложке в едином технологическом цикле интегральные схемы драйверов, что позволяет уменьшить необходимое количество периферийных устройств и стоимость.

2. Более высокий апертурный коэффициент: более высокая подвижность носителей означает, что можно обеспечить требуемое время заряда пикселя при помощи меньшего тонкопленочного транзистора. Это ведет к тому, что большая площадь элемента может быть задействована под область пропускания света.

3. Носитель для OLED: Более высокая подвижность носителей означает, что тока питания вполне достаточно для управления OLED приборами.

4. Компактность модуля: За счет наличия встроенного драйвера требуется меньшая площадь печатной платы для схемы управления.

Характеристики получаемых таким образом TFT ЖКИ будут рассмотрены ниже, а пока рассмотрим основные аспекты LTPS технологии.

Лазерный отжиг

При лазерном отжиге кристаллизация a-Si пленки происходит уже при температуре менее 400°C. На рисунке показана структура a-Si до лазерного отжига и структура p-Si, полученная уже после лазерного отжига.

Подвижность электронов

Подвижность электронов в тонкопленочных транзисторах (TFT), изготовленных по технологи LTPS достигает ~200 см 2 /В*s, что намного выше, чем у транзисторов a-Si технологии (всего ~0.5 см2/В*s). Повышенная подвижность электронов позволяет увеличить степень интеграции формируемой на подложке ЖКИ интегральной схемы, а так же уменьшить размеры самого тонкопленочного транзистора.

Приведенный ниже рисунок упрощенно показывает к чему приводит повышенная подвижность электронов.

Апертурный коэффициент

Апертурный коэффициент - это отношение полезной площади ячейки к ее полной площади. Так как тонкопленочный транзистор LTPS ЖКИ имеет намного меньший размер, чем транзистор ЖКИ, изготовленного по a-Si технологии, то полезная площадь ячейки, а, следовательно, и апертурный коэффициент, такого ЖКИ будет выше. Как известно, при всех равных параметрах яркость ячейки с большим апертурным коэффициентом будет больше!

На приведенном ниже рисунке можно видеть, что эффективная площадь LTPS TFT больше, чем у тонкопленочного транзистора, изготовленного по a-Si технологии.

Встроенные драйверы

LTPS технология позволяет в едином цикле формировать непосредственно на подложке ЖКИ и интегральные схемы драйверов. Это позволяет существенно снизить количество необходимых внешних контактов и уменьшить размеры самой подложки. Это ведет к тому, что требуемая надежность устройства может быть достигнута при меньших затратах, а следовательно стоимость всего изделия также будет ниже.

На приведенном ниже рисунке упрощенно показаны ЖКИ, изготовленный по a-Si технологии и ЖКИ с интегрированным драйвером, изготовленный по LTPS технологии,. Как видно, количество контактов и площадь подложки у первого намного больше.

Характеристики LTPS технологии:

  • Более высокая реакция электронов
  • Меньшее количество соединений и элементов
  • Низкое потребление
  • Возможность интеграции на подложке интегральных схем драйверов

Производство LTPS TFT ЖКИ

На приведенном ниже рисунке показана структурная схема производства LTPS TFT ЖКИ.



Случайные статьи

Вверх