Что называется периодом переменного тока. Переменный синусоидальный ток

§ 50. Основные величины, характеризующие переменный ток

Переменная э. д. с., переменное напряжение, а также переменный ток характеризуются периодом, частотой, мгновенным, максимальным и действующим значениями.
Период. Время, в течение которого переменная э. д. с. (напряжение или ток) совершает одно полное изменение по величине и направлению (один цикл), называется периодом . Период обозначается буквой Т и измеряется в секундах.
Если одно полное изменение переменной э. д. с. совершается за 1/50 сек , то период этой э. д. с. равен 1/50 сек .
Частота. Число полных изменений переменной э. д. с. (напряжения или тока), совершаемых за одну секунду, называется частотой . Частота обозначается буквой f и измеряется в герцах (гц ). При измерении больших частот пользуются единицами килогерц (кгц ) и мегагерц (Мгц ); 1 кгц = 1000 гц , 1 Мгц = 1000 кгц , 1 Мгц = 1 000 000 гц = 10 6 гц . Чем больше частота переменного тока, тем короче период. Таким образом, частота - величина, обратная периоду.

Пример. Длительность одного периода переменного тока равна 1/500 сек . Определить частоту тока.
Решение . Одно полное изменение переменного тока происходит за 1/500 сек . Следовательно, за одну секунду совершится 500 таких изменений. На основании этого частота

Чем больше период переменного тока, тем меньше его частота. Таким образом, период является величиной, обратной частоте, т. е.

Пример. Частота тока равна 2000 гц (2 кгц ). Определить период этого переменного тока.
Решение . За 1 сек происходит 2000 полных изменений переменного тока. Следовательно, одно полное изменение тока - один период совершается за 1/2000 долю секунды. Но основании этого период

Угловая частота. При вращении витка в магнитном поле один его оборот соответствует 360°, или 2π радиан. (1 рад = 57° 17′ 44″; π = 3,14.) Если, например, виток за время Т = 3 сек совершает один оборот, то угловая скорость его вращения за одну секунду

Соответственно угловая скорость вращения этого витка выражается в рад/сек и определяется отношением Эта величина называется угловой частотой и обозначается буквой ω.
Таким образом,

Так как частота переменного тока то, подставляя это значение f в выражение угловой частоты, получим:

Угловая частота ω, выраженная в рад/сек , больше частоты тока f , выраженной в герцах, в 2π раз.
Если частота переменного тока f = 50 гц , то угловая частота

ω = 2πf = 2 · 3,14 · 50 = 314 рад/сек

В различных областях техники применяют переменные токи самых разных частот. На электростанциях СССР установлены генераторы, вырабатывающие переменную электродвижущую силу, частота которой f = 50 гц . В радиотехнике и электронике используют переменные токи частотой от десятков до многих миллионов герц.
Мгновенное и максимальное значения. Величину переменной электродвижущей силы, силы тока, напряжения и мощности в любой момент времени называют мгновенными значениями этих величин и обозначают соответственно строчными буквами (e, i, u, p ).
Максимальным значением (амплитудой) переменной э. д. с. (или напряжения или тока) называется та наибольшая величина, которой она достигает за один период. Максимальное значение электродвижущей силы обозначается Е m , напряжения - U m , тока - I m .
На рис. 51 видно, что переменная э. д. с. достигает своего значения два раза за один период.



Действующая величина. Электрический ток, протекающий по проводам, нагревает их независимо от своего направления. В связи с этим тепло выделяется не только в цепях постоянного тока, но и в электрических цепях, по которым протекает переменный ток.
Если по проводнику сопротивлением r ом протекает переменный электрический ток, то в каждую секунду выделяется определенное количество тепла. Это количество тепла прямо пропорционально максимальному значению переменного тока.
Можно подобрать такой постоянный ток, который, протекая по такому же сопротивлению, что и переменный ток, выделял бы равное количество тепла. В этом случае можно сказать, что в среднем действие (эффективность) переменного тока по количеству выделенного тепла равно действию постоянного тока.
Действующим (или эффективным) значением переменного тока называется такая сила постоянного тока, которая, протекая через равное сопротивление и за одно и то же время, что и переменный ток, выделяет одинаковое количество тепла.
Электроизмерительные приборы (амперметр, вольтметр), включенные в цепь переменного тока, измеряют соответственно действующее значение тока и напряжения.
Для синусоидального переменного тока действующее значение меньше максимального в 1,41 раз, т. е. в раз.

Аналогично действующие значения переменной электродвижущей силы и напряжения меньше их максимальных значений тоже в 1,41 раза.

По величине измеренных действующих значений силы переменного тока, напряжения или электродвижущей силы можно вычислить их максимальные значения:

E m = E · 1,41; U m = U · 1,41; I m = I · 1,41; (55)

Пример. Вольтметр, подключенный к зажимам цепи, показывает действующее напряжение U = 127 в . Вычислить максимальное значение (амплитуду) этого переменного напряжения.
Решение . Максимальное значение напряжения больше действующего в раз, поэтому

U m = U · = 127 · 1,41 = 179,07 в

Для характеристики каждой переменной электродвижущей силы, переменного напряжения или переменного тока недостаточно знать период, частоту и максимальное значение.



Фаза. Сдвиг фаз. При сопоставлении двух и более переменных синусоидальных величин (э. д. с., напряжения или тока) необходимо также учитывать, что они могут изменяться во времени неодинаково и достигать своего максимального значения в разные моменты времени. Если в электрической цепи ток изменяется во времени так же, как меняется э. д. с., т. е. когда электродвижущая сила равна нулю и ток в цепи равен нулю, а при увеличении э. д. с. до положительного максимального значения одновременно увеличивается и достигает положительной максимальной величины и сила тока в цепи, и далее, когда э. д. с. уменьшается до нуля и сила тока одновременно станет равна нулю и т. д., то в такой цепи переменная электродвижущая сила и переменный ток совпадают по фазе.
На рис. 52 показаны моменты вращения двух проводников в магнитном поле и графики изменения э. д. с. в проводах. Провод 1 и провод 2 смещены на угол φ = 90°. При пересечении магнитного потока в каждом из проводов возникает переменная э. д. с. Когда в проводе 2 электродвижущая сила равна нулю, в проводе 1 она будет максимальной. В проводе 2 э. д. с. постепенно увеличивается и достигает максимального значения в момент t 1 , а в проводе 1 индуктируемая э. д. с. постепенно убывает и в этот же момент времени равна нулю. Таким образом, индуктируемые в проводах э. д. с. не совпадают по фазе, а сдвинуты одна относительно другой по фазе на 1/4 периода или на угол φ = 90°. Кроме того, э. д. с. в проводе 1 раньше достигает максимума, чем э. д. с. в проводе 2 , и поэтому считают, что электродвижущая сила е 1 опережает по фазе э. д. с. е 2 или э. д. с. е 2 отстает по фазе от э. д. с. е 1 . При расчетах цепей переменного тока важное практическое значение имеет сдвиг фаз между переменными напряжением и током.

Ток, периодически меняющийся по величине и направлению, называется переменным током. Представление о переменном токе можно получить, если медленно вращать ручку действующей модели генератора, подключенного к гальванометру. Отклонение стрелки гальванометра то вправо, то влево говорит о периодическом изменении величины и направления тока в цепи, т. е. о переменном токе.

Переменный ток, используемый в производстве и быту, изменяется по синусоидальному закону:

i = I m sinω t ,

где i - значение переменного тока в любой момент времени, называемое мгновенным значением переменного тока. Величина I m , стоящая перед знаком синуса, называется амплитудой переменного тока.

Действующим значением переменного тока называется постоянный ток, который за время одного периода оказывает такое тепловое (механическое и др.) действие, как и данный переменный ток. Действующее значение для данного переменного тока есть величина постоянная и равная амплитудному значению, деленному на √2 , т. е.

I Д = I m
√2

Все определения и соотношения действующего значения переменного тока справедливы и для переменного напряжения.

Амперметр и вольтметр, работа которых основана на тепловом или механическом действии, при измерении переменного тока и напряжения показывают их действующие значения.

1. Мгновенное значение - величина тока соответствующая данному моменту времени

2. Амплитуда - это наибольшее положительное или отрицательное значение переменного тока. Величина ω , стоящая под знаком синуса, является угловой скоростью. Произведение угловой скорости на время (ωt ) представляет собой угол, возрастающий со временем.

Графиком переменного тока является синусоида (см. рис.).

График переменного тока

Амплитуда - максимальное мгновенное значение (наибольшее значение, которого достигает переменный ток).


Здесь амплитуда 20 мА

3. Периодом (T ) называется время, в течение которого происходит полное изменение (колебание) тока в проводнике.

Обозначается буквой Т


кликните по картинке чтобы увеличить

За один период совершается одно колебание переменного тока, т. е. период это время одного колебания. Одно колебание состоит из двух движений тока.

Частотой (f ) называется величина, выражающаяся числом полных колебаний тока за одну секунду. Частота измеряется в герцах (Гц). При частоте в 1 Гц происходит одно полное колебание тока за одну секунду.

Стандартной частотой переменного тока в СССР является частота 50 Гц, что соответствует 50 полным колебаниям тока за одну секунду.

Частота - величина, обратная периоду. Следовательно,

f = 1/T или T = 1/f

Переменный ток, как и постоянный, оказывает тепловое, механическое, магнитное и химическое действия. В формулы расчета теплового, механического, магнитного и химического действий переменного тока подставляется действующее значение переменного тока.

5. Фаза - это состояние переменного тока за определенный период времени


кликните по картинке чтобы увеличить

Переменные величины могут совпадать по фазе. Это значит что они одновременно достигают нулевых значений и одновременно достигают максимальных значений одинаковых направлений.

Здесь токи I1 и I2 совпадают по фазе


кликните по картинке чтобы увеличить

Здесь напряжения U1 и U2 находятся в противофазе.

Это значит что они одновременно достигают нулевых и максимальных значений противоположных направлений.

Если переменные величины не совпадают по фазе, то говорят что они сдвинуты по фазе.Сдвиг по фазе выражается в градусах или в долях периода. Весь период 360 0 , так как период получается за один полный оборот проводника по окружности в магнитном поле.


кликните по картинке чтобы увеличить

Здесь напряжение отстает от тока на 90 0 , т. е. ток и напряжение сдвинуты по фазе на 90 0 .

Действительно в начале ток уже достиг максимума, а напряжение находится на нуле. Напряжение достигнет максимума через 90 0 .

Сдвиг по фазе обозначается греческой буквой φ например φ=90 0 .

Допустим, что до отключения в цепи рис. 4.5, а был установившийся ток I = U/r и энергия магнитного поля катушки составляла

WL = I 2 L /2.

Казалось бы, после размыкания выключателя ток должен мгновенно прекратиться. Однако на основании первого закона коммутации при t = 0+ ток сохраняет свое прежнее значение.

Возникает как будто несоответствие: цепь разомкнута, ток есть. В действительности при размыкании выключатели происходит следующее. Ток уменьшается, и в катушке индуктируется значительная ЭДС. При этом напряжение между контактами выключателя, равное сумме напряжения сети и ЭДС самоиндукции, пробивает воздушный промежуток между контактами - возникает электрическая дуга и электрическая цепь оказывается замкнутой. По мере увеличения расстояния между контактами сопротивление дуги возрастает, ток и ЭДС уменьшаются и цепь оказывается разомкнутой. За время переходного процесса энергия магнитного поля катушки выделяется в виде теплоты в электрической дуге и сопротивлении катушки.

Переходный процесс в этом случае получается довольно сложным вследствие того, что сопротивление дуги нелинейное и изменяется во времени.

Отключение цепи с индуктивностью вызывает обгорание контактов размыкающего устройства и появление значительных ЭДС и напряжения на выводах катушки, превышающих в несколько раз напряжение сети (это может привести к пробою изоляции катушки).

Во избежание этого в силовых цепях, обладающих значительной индуктивностью (обмотки возбуждения генераторов и двигателей постоянного тока, синхронных двигателей, магнитных плит и т. п.), параллельно обмоткам включают разрядные резисторы (рис. 4.5, б ).

В этом случае после отключения выключателя катушка индуктивности (r , L ) оказывается замкнутой на разрядное сопротивление r р . Ток в цепи будет убывать значительно медленнее. По этой причине значение возникающей ЭДС будет существенно меньше, чем без разрядного резистора, и возникшая слабая дуга исчезает почти мгновенно. В последующих рассуждениях и выводах предполагается, что дуга между контактами не возникает и цепь размыкается мгновенно.

Уравнение цепи, составленное по второму закону Кирхгофа, имеет вид

e = i (r + r p ).

Заменив e в (4.29), получим

Ldi/dt + i (r + r p ) = 0.

Решением дифференциального уравнения будет выражение

i = Aept .

Из характеристического уравнения pL+ (r + r p )= 0 определяют показатель степени р:

р = - r + r p = - 1 .
L Т

Подставив это выражение в (4.31), получим

i = Ae - t/T ,

где Т = L / (r + r p ) - постоянная времени цепи.

Значение А определяют из начальных условий на основании первого закона коммутации: приt = 0+

i = I нач =U/r и A = U/r.

Выражение тока в цепи имеет вид

i = U e - t/T = I нач e-t/T .
r

Подставив в (4.29) значение i из (4.32), получим ЭДС

е = U (r + r p )e-t/T = I нач (r + r p )e-t/T .
r

Напряжение на выводах катушки равно напряжению на разрядном резисторе:

u к = ir р = U r p e-t/T - I нач r p e-t/T .
r

В начальный момент при t = 0+

e нач = I нач (r + r p ),

u к.нач = I нач r p .

Из выражений (4.33) и (4.34) вытекает, что начальные значения e нач и u к.нач зависят от сопротивления разрядного резистора. При больших значениях r р они могут оказаться чрезмерно большими и опасными для изоляция установки.

На рис. 4.5, в изображены графики i (t ) и u к (t ) катушки после отключения цепи для двух значений r р , r р > r" р .

На практике обычно выбирают r р в 4-8 раз больше собственного сопротивления обмотки индуктивной катушки:

r р = (4÷8)r .



Время, в течение которого совершается один цикл колебания (полное изменение ЭДС) или один полный оборот радиуса-вектора, называется периодом колебания переменного тока

Период измеряется в секундах и обозначают латинской буквой Т . Так же нашли применение более мелкие единицы измерения периода это миллисекунда (мс) - одна тысячная секунды и микросекунда (мкс) - одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.
1 мкс=0,001 мс = 0,000001сек =10 -6 сек.
1000 мкс = 1 мс
.

Чем быстрее осуществляется изменение ЭДС, тем меньше период колебания и тем выше частота. Поэтому, частота и период тока являются величинами, обратно пропорциональными друг другу. Математическая связь между периодом и частотой описывается формулами.

Частота обозначается латинской буквой f и выражается в периодах в секунду или в герцах . Одна тысяча герц называется килогерцем (кГц) , а миллион герц - мегагерцем (МГц) . Используется так же физическая единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;
1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;
1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

f = 1/T или Т = 1/f

Например, известно, что частота тока в электрической сети перемнного тока равна 50 Гц, то период будет равен 0,02 секунды

Частоты от 20 до 20 000 Гц называются звуковыми частотами, так как их способно воспринимать ухо человека. Далее идут ультразвуковые частоты это упругие волны диапазона чуть выше звукового от 20 кГц и более, высокой частоты, отлично демонстрирует работу ультразвука . А вот например некоторые радиопередатчики или мобильные телефоны работают на частотах уже МГц и даже ГГц. Поэтому высокие частоты получили название радиочастоты. Кроме того используется и более высокие частоты, например в антеннах радиолокационных станций, спутниковой связи, ГЛОНАСС, GPS частотный диапазон от 40 ГГц и даже выше.

Максимальное значение, которого достигает ЭДС или сила тока в течении периода, называется амплитудой ЭДС или силы переменного тока. Легко увидеть по рисунку, что амплитуда в масштабе определяется длиной радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно латинскими символами Im, Em и Um .

Угловая частота переменного тока

Скорость вращения радиуса-вектора, или изменение величины угла поворота в течение одной секунды, называется угловой частотой переменного тока и обозначается греческим символом ω (омега). Угол поворота радиуса-вектора в любой момент относительно его начального расположения измеряется не в градусах, а в специальных единицах - радианах . Радиан это угловая величина дуги окружности, длина которой соответствует радиусу этой окружности. Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2π .

Тогда, 1 рад = 360°/2π

Значит, конец радиуса-вектора в течение одного периода проходит путь, равный 6,28 радиан (2π). Так как в течение секунды радиус-вектор сделает число оборотов, соответствующее частоте переменного тока f, то за секунду его конец пройдет путь, равный 6,28 × f радиан. Это выражение, говорящее о скорости вращения радиуса-вектора, является угловой частотой переменного тока ω .

ω= 6,28×f = 2fπ

Угол поворота радиуса-вектора в любой возможный момент относительно его начального положения называется фазой переменного тока . Фаза характеризует величину ЭДС или тока в какое-то произвольное конкретное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза говорит о том, убывает ли ЭДС или возрастает, в произвольный момент времени

Полный цикл (оборот) радиуса-вектора равен 360° градусов. С началом нового цикла радиуса-вектора изменение ЭДС осуществляется в том же порядке, что и в течение первого оборота. Поэтому, все фазы ЭДС будут идти в прежнем порядке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370 градусов будет такой же, как и при повороте на десять градусов. В обоих случаях радиус-вектор займет одинаковое положение, и, поэтому, мгновенные значения ЭДС будут в обоих случаях одинаковыми по фазе.



Случайные статьи

Вверх