Что влияет на величину потерь электроэнергии. Расчет потерь электроэнергии в электрических сетях

23/01/2014

Одна из важных для энергетической отрасли проблем сегодня – потери электроэнергии при транспортировке по сетям. Для потребителей они отрицательно сказываются на качестве электроснабжения, а для энергопредприятий – на их экономике. Также энергопотери негативно отражаются на функционировании всей системы электроснабжения. Их называют фактическими или отчетными. Такие потери представляют собой разность электроэнергии, между той, которая поступила в сеть и той, которая была поставлена потребителям.

Классифицировать энергопотери можно по различным составляющим: характер потерь, класс напряжения, группа элементов, производственное подразделение и т.п. Мы же попытаемся их разделить по физической природе и специфике методов определений количественного значения. По этим параметрам можно выделить:

1.Потери технического характера. Они возникают при передаче энергии по электросетям и обуславливаются физическими процессами, которые происходят в проводах и оборудовании.

2. Электроэнергия, которая расходуется на обеспечение работы подстанций и деятельности персонала. Такая энергия определяется счетчиками, установленными на трансформаторах собственных нужд электростанций.

3. Потери, которые обусловлены погрешностями при ее измерении приборами.

4. Потери коммерческого характера. Это – хищения энергии, различия в показаниях счетчиков и произведенной оплатой потребителями. Их высчитывают по разнице между отчетными потерями и суммой потерь электроэнергии, указанной нами в первых трех пунктах. Энергопотери, которые возникают по причине воровства, зависят от человеческого фактора. Это – . А вот три первые составляющие происходят в итоге технологических потребностей процесса, именно о них сейчас пойдет речь.

Электроэнергия – продукт, который на пути от производителя до потребителя не требует дополнительных ресурсов на транспортировку, а расходует сам себя. Этот процесс неизбежен. Ведь, при передвижении автотранспорта из точки А в точку Б, мы тратим бензин, газ или энергию электродвигателей и воспринимаем это, как должное. Мы никогда не говорим, что при транспортировке груза «потери бензина составили 10 литров», обычно используется выражение «расход бензина составил 10 литров». Количество израсходованной электроэнергии, потраченной на транспортировку, как в примере с автомобилями, мы называем потерями. Суть этого термина в представлении людей несведущих – плохо организованный процесс транспортировки электричества, который может ассоциироваться с потерями при перевозке картофеля или зерна. Чтобы убедиться в обратном, рассмотрим пример.

При передвижении электроэнергия преодолевает сотни километров, такой процесс не может происходить без определенных затрат. Для того, чтобы более наглядно продемонстрировать картину, сравним передачу электрической энергии с передачей тепловой энергии, которые по своей сути очень сходны. Тепловая энергия тоже теряет часть себя во время транспортировки. Например, через изоляцию труб, которая не может быть совершенной. Такие потери неизбежны, они не устраняются полностью, а лишь уменьшаются путем улучшения изоляции, заменой труб на более совершенные. Процесс требует немалых материальных затрат. При этом, подобными потерями полезная работа, направленная на транспортировку самой тепловой энергии, не совершается. Транспортировка по трубам осуществляется за счет энергии, потребляемой насосными станциями. В случаях прорыва труб и протечки горячей воды наружу, термин «потери» можно применить в полной мере. Потери же при передаче электрической энергии носят несколько иной характер. Они совершают полезную работу. Как в примере с водой, электроэнергия не может «вытекать» наружу из проводов.


Электрическая сеть – это преобразовательная и распределительная система. Ее части соединены между собой проводами и кабелями. На сотнях и тысячах километров, которые разделяют производителя энергии и потребителя расположены системы трансформации и разветвления, представляющие собой коммутационные устройства и проводники. Ток, который течет в этих проводниках, — это упорядоченное передвижение электронов. Они при перемещении сталкиваются с преградами кристаллической структуры вещества. Для того, чтобы преодолеть эту преграду электрону надо потратить определенное количество своей внутренней энергии. Последняя превращается в энергию тепла и бесследно пропадает в окружающей среде. Это и есть «потери» электрической энергии.

Но указанная причина, по которой они происходят – не единственная. На длительном пути следования энергия встречается с большим количеством коммутационных устройств в виде пускателей, выключателей, переключателей и им подобных. Они состоят из силовых контактов, имеющих более высокое сопротивление, чем однородные проводники – провода или кабели. Во время эксплуатации происходит износ контактов, как итог – ухудшается электрическая проводимость, а как следствие – потери электроэнергии. Значение в этом процессе имеют и контакты в местах, где есть соединение провода со всевозможными устройствами, аппаратами и системами. В общей сложности все места соединений представляют существенное количество потерь электроэнергии. Энергопотери могут усугубляться несвоевременными профилактикой и контролем участков электросетей. Можно назвать еще одну причину утечки электроэнергии: как бы хорошо не были изолированы провода, определенная часть тока все равно попадает на землю.

В местах устаревшей электрической изоляции потери, естественно, усугубляются. На их количество влияет и то, насколько перегружено оборудование – трансформаторные подстанции, распределительные пункты, кабельные и воздушные линии. Можно сделать вывод, что своевременный контроль за состоянием оборудования, необходимые его ремонт и замена, соблюдение требований эксплуатации, снижают потери электроэнергии. Увеличение количества потерь – это свидетельство проблем в сети, которые требуют технического перевооружения, совершенствования методов и средств эксплуатации.

Международные эксперты определили, что энергетические потери при передаче по электрическим сетям считаются соответствующими, если их показатель не выше 4-5%. В том случае, когда они достигают 10% их нужно считать максимально допустимыми. В разных странах показатели могут существенно различаться. Это зависит от принципов развития энергетической системы. Определяющими факторами становятся ориентация на крупные электростанции и протяженные линии электропередач или же маломощные станции, расположенные в центрах нагрузки и пр. В таких странах, как Германия и Япония показатель потерь составляет 4-5%. В странах, где территория протяженная, а энергетическая система сконцентрирована на мощных электростанциях цифра потерь приближается к 10%. Примером этому служат Норвегия и Канада. Энергетическая генерация в каждой стране уникальна. Поэтому применять показатели какой-либо страны к российским условиям совершенно бессмысленно.

Ситуация в России говорит о том, что уровень потерь может быть обоснован только расчетами для конкретных схем и нагрузок сетей. Норму потерь устанавливает Министерство энергетики для каждой сетевой компании отдельно. В разных регионах эти цифры отличаются. В среднем же по России показатель составил 10%. Значимость проблемы растет с каждым годом. В связи с этим ведется большая работа по анализу потерь и их уменьшению, разрабатываются эффективные методы расчета. Так, «АО-энерго» представило целый комплекс расчета всех составляющих потерь в сетях всех категорий. Этот комплекс получил сертификат соответствия, который был утвержденЦДУ ЕЭС России, Главгосэнергонадзором России и Департаментом электрических сетей РАО «ЕЭС России». Установка тарифов на электроэнергию зависит и от норм потерь в этой сфере. Тарифы регулируются федеральными и региональными энергетическими комиссиями. Организации обязаны обосновать уровень энергопотерь, который для них считается целесообразным, и включить в состав тарифов. Энергетические комиссии в свою очередь анализируют данные обоснования и либо принимают их, либо корректируют. Лидер по минимальному показателю энергопотерь в стране – Республика Хакасия. Здесь эта цифра составляет 4%.

Величина постоянных потерь электроэнергии в элементах электрической сети составляет

W "=(Р к +Р у +Р хх)Т вкл =Р "Т вкл, (8.1)

где Т вкл – время включения или время работы элементов электрической сети в течение года. Для воздушных и кабельных линий и трансформаторов при выполнении проектных расчетов принимается Т вкл = 8760 ч.

Суммарная величина потерь электроэнергии в сети составляет

W =W "+W ". (8.2)

Рассмотрим способы определения переменных потерь в электрической сети. Пусть для элемента электрической сети, например воздушной линии, имеющей активное сопротивление R , известен годовой график нагрузки. Этот график представляется в виде ступенчатого графика по продолжительности Dt i каждой нагрузки Р i . (рис. 8.1,а ).

Энергия, передаваемая в течение года через рассматриваемый элемент сети, выразится как

W = . (8.3)

Эта энергия представляет собой площадь фигуры, ограниченной графиком нагрузки.

На этом же графике построим прямоугольник с высотой, равной наибольшей нагрузке Р max , и площадью, равной площади действительного графика нагрузки. Основанием этого прямоугольника будет время Т max . Это время называется продолжительностью использования наибольшей нагрузки . За это время при работе элемента сети с наибольшей нагрузкой через него будет передана та же электроэнергия, что и при работе по действительному годовому графику нагрузки. Средние значения Т max для различных отраслей промышленности приводятся в .

Потери мощности в рассматриваемом элементе сети для каждого i -го интервала времени составят

Р i =(S i /U ном) 2 R =(P i /U ном cos) 2 R , (8.4)

где cos – коэффициент мощности нагрузки.

На рис. 8.1,б приведен ступенчатый график потерь мощности, построенный по выражению (8.4). Площадь этого графика равна годовым переменным потерям электроэнергии в рассматриваемом элементе сети


а) б)

Рис. 8.1. Графики нагрузки по продолжительности для определения времени

Т max (а ) и времени max (б )

W "= . (8.5)

По аналогии с рис. 8.1,а построим прямоугольник с высотой, равной наибольшим потерям Р max , и площадью, равной площади действительного графика потерь электроэнергии. Основанием этого прямоугольника будет время max . Это время называется временем наибольших потерь мощности . За это время при работе элемента сети с наибольшей нагрузкой потери электроэнергии в нем будут такими же, что и при работе по действительному годовому графику нагрузки.

Связь между Т max и max приближенно устанавливается эмпирической зависимостью

max =(0,124+Т max 10 -4) 2 8760. (8.6)

При перспективном проектировании электрических сетей график нагрузки потребителей, как правило, не известен. С определенной степенью достоверности известна лишь наибольшая расчетная нагрузки Р max .

Для характерных потребителей в справочной литературе приводятся значения Т max . В этом случае переменные годовые потери электроэнергии в элементе электрической сети определяются по выражению

W "=P max max , (8.7)

где max рассчитывается по выражению (8.6).

Контрольные вопросы к разделу 8

1. Поясните термины “постоянные потери” и ”переменные потери” электроэнергии.

2. Назовите составляющие постоянных потерь.

3. Что такое число часов использования наибольшей нагрузки?

4. Что такое число часов наибольших потерь мощности?

5. Как рассчитываются переменные потери энергии при проектировании

электрических сетей?


Потери электроэнергии в электрических сетях
Потери электроэнергии в электрических сетях - важнейший показа-тель экономичности их работы, наглядный индикатор состояния сис-темы учета электроэнергии, эффективности энергосбытовой деятель-ности энергоснабжающих организаций.
Этот индикатор все отчетливей свидетельствует о накапливающих-ся проблемах, которые требуют безотлагательных решений в развитии, реконструкции и техническом перевооружении электрических сетей, совершенствовании методов и средств их эксплуатации и управления, в повышении точности учета электроэнергии, эффективности сбора денежных средств за поставленную потребителям электроэнергию и т.п.
По мнению международных экспертов, относительные потери элек-троэнергии при ее передаче и распределении в электрических сетях большинства стран можно считать удовлетворительными, если они не превышают 4-5 %. Потери электроэнергии на уровне 10 % можно счи-тать максимально допустимыми с точки зрения физики передачи элек-троэнергии по сетям.
Становится все более очевидным, что резкое обострение проблемы снижения потерь электроэнергии в электрических сетях требует актив-ного поиска новых путей ее решения, новых подходов к выбору соот-ветствующих мероприятий, а главное, к организации работы по сни-жению потерь.
В связи с резким сокращением инвестиций в развитие и техниче-ское перевооружение электрических сетей, в совершенствование сис-тем управления их режимами, учета электроэнергии, возник ряд негативных тенденций, отрицательно влияющих на уровень потерь в сетях, таких как: устаревшее оборудование, физический и моральный износ средств учета электроэнергии, несоответствие установленного оборудования передаваемой мощности.
Из вышеотмеченного следует, что на фоне происходящих измене-ний хозяйственного механизма в энергетике, кризиса экономики в стране проблема снижения потерь электроэнергии в электрических сетях не только не утратила свою актуальность, а наоборот выдвину-лась в одну из задач обеспечения финансовой стабильности энерго-снабжающих организаций.
Некоторые определения:
Абсолютные потери электроэнергии --– разность электроэнергии, отпущенной в электрическую сеть и полезно отпущенной потребителям.
Технические потери электроэнергии – потери обусловленные физическими процессами передачи, распределения и трансформации электроэнергии, определяются расчетным путем.
Технические потери делятся на условно-постоянные и переменные (зависящие от нагрузки).
Коммерческие потери электроэнергии – потери, определяемые как разность абсолютных и технических потерь.

СТРУКТУРА КОММЕРЧЕСКИХ ПОТЕРЬ ЭЛЕКТРОЭНЕРГИИ
В идеальном случае коммерческие потери электроэнергии в элек-трической сети, должны быть равны нулю. Очевидно, однако, что в реальных условиях отпуск в сеть, по-лезный отпуск и технические потери определяются с погрешностями. Разности этих погрешностей фактически и являются структурны-ми составляющими коммерческих потерь. Они должны быть по возможности сведены к минимуму за счет выполнения соответствую-щих мероприятий. Если такая возможность отсутствует, необходимо внести поправки к показаниям электросчетчиков, компенсирующие систематические погрешности измерений электроэнергии.

Погрешности измерений отпущенной в сеть и полезно отпущенной электроэнергии потребителям.
Погрешность измерений электроэнергии в общем случае может быть разбита на
множество составляющих.рассмотрим наиболее значимые составляющие погрешностей изме-рительных комплексов (ИК), в которые могут входить: трансформатор тока (ТТ), трансформатор напряжения (ТН), счетчик электроэнергии (СЭ), линия присоединения СЭ к ТН.
К основным составляющим погрешностей измерений отпущенной в сеть и полезно отпущенной электроэнергии относятся:

погрешности измерений электроэнергии в нормальных условиях
работы ИК, определяемые классами точности ТТ, ТН и СЭ;
дополнительные погрешности измерений электроэнергии в реаль-ных условиях эксплуатации ИК, обусловленные:
заниженным против нормативного коэффициентом мощности
нагрузки (дополнительной угловой погрешностью); .
влиянием на СЭ магнитных и электромагнитных полей различной частоты;
недогрузкой и перегрузкой ТТ, ТН и СЭ;
несимметрией и уровнем подведенного к ИК напряжения;
работой СЭ в неотапливаемых помещениях с недопустимо низ-
кой температурой и т.п.;
недостаточной чувствительностью СЭ при их малых нагрузках,
особенно в ночные часы;
систематические погрешности, обусловленные сверхнормативны-ми сроками службы ИК.
погрешности, связанные с неправильными схемами подключения электросчетчиков, ТТ и ТН, в частности, нарушениями фазировки подключения счетчиков;
погрешности, обусловленные неисправными приборами учета электроэнергии;
погрешности снятия показаний электросчетчиков из-за:
ошибок или умышленных искажений записей показаний;
неодновременности или невыполнения установленных сроков
снятия показаний счетчиков, нарушения графиков обхода счет-
чиков;
ошибок в определении коэффициентов пересчета показаний
счетчиков в электроэнергию.
Следует заметить, что при одинаковых зна-ках составляющих погрешностей измерений отпуска в сеть и полезного отпуска коммерческие потери будут уменьшаться, а при разных - уве-личиваться. Это означает, что с точки зрения снижения коммерческих потерь электроэнергии необходимо проводить согласованную техниче-скую политику повышения точности измерений отпуска в сеть и полезного отпуска. В частности, если мы, например, будем односторонне уменьшать систематическую отрицательную погрешность измерений (модернизировать систему учета), не меняя погрешность измере-ний, коммерческие потери при этом возрастут, что, кстати, имеет место на практике.

Потерями в электросетях считают разность между переданной электроэнергией от производителя до учтенной потребленной электроэнергией потребителя. Потери происходят на ЛЭП, в силовых трансформаторах, за счет вихревых токов при потреблении приборов с реактивной нагрузкой, а также из-за плохой изоляции проводников и хищения неучтенного электричества. В этой статье мы постараемся подробно рассказать о том, какие бывают потери электроэнергии в электрических сетях, а также рассмотрим мероприятия по их снижению.

Расстояние от электростанции к поставляющим организациям

Учет и оплата всех видов потерь регулируется законодательным актом: «Постановление Правительства РФ от 27.12.2004 N 861 (ред. от 22.02.2016) «Об утверждении Правил недискриминационного доступа к услугам по передаче электрической энергии и оказания этих услуг…» п. VI. Порядок определения потерь в электрических сетях и оплаты этих потерь. Если вы хотите разобраться с тем, кто должен оплачивать часть утраченной энергии, рекомендуем изучить данный акт.

При передаче электроэнергии на большие расстояния от производителя до поставщика ее к потребителю теряется часть энергии по многим причинам, одна из которых — напряжение, потребляемое обычными потребителями (оно составляет 220 или 380 В). Если производить транспортировку такого напряжения от генераторов электростанций напрямую, то необходимо проложить электросети с диаметром провода, который обеспечит всех необходимым током при указанных параметрах. Провода будут очень толстыми. Их невозможно будет подвесить на линиях электропередач, из-за большого веса, прокладка в земле тоже обойдется недешево.

Более подробно узнать о том, вы можете в нашей статье!

Для исключения этого фактора в распределительных сетях применяют высоковольтные линии электропередач. Простая формула расчета такова: P=I*U. Мощность равна произведению тока на напряжение.

Мощность потребления, Вт Напряжение, В Ток, А
100 000 220 454,55
100 000 10 000 10

Повышая напряжение при передаче электроэнергии в электрических сетях можно существенно снизить ток, что позволит обойтись проводами с намного меньшим диаметром. Подводный камень данного преобразования заключается в том, что в трансформаторах есть потери, которые кто-то должен оплатить. Передавая электроэнергию с таким напряжением, она существенно теряется и от плохого контакта проводников, которые со временем увеличивают свое сопротивление. Возрастают потери при повышении влажности воздуха – увеличивается ток утечки на изоляторах и на корону. Также увеличиваются потери в кабельных линиях при снижении параметров изоляции проводов.

Передал поставщик энергию в поставляющую организацию. Та в свою очередь должна привести параметры в нужные показатели: преобразовать полученную продукцию в напряжение 6-10 кВ, развести кабельными линиями по пунктам, после чего снова преобразовать в напряжение 0,4 кВ. Снова возникают потери на трансформацию при работе трансформаторов 6-10 кВ и 0,4 кВ. Бытовому потребителю доставляется электроэнергия в нужном напряжении – 380 В или 220В. Любой трансформатор имеет свой КПД и рассчитан на определенную нагрузку. Если мощность потребления больше или меньше расчетной мощности, потери в электрических сетях возрастают независимо от желания поставщика.

Следующим подводным камнем всплывает несоответствие мощности трансформатора, преобразующего 6-10 кВ в 220В. Если потребители берут энергии больше паспортной мощности трансформатора, он или выходит из строя, или не сможет обеспечить необходимые параметры на выходе. В результате снижения напряжения сети электроприборы работают с нарушением паспортного режима и, как следствие, увеличивают потребление.

Мероприятия по снижению технических потерь электроэнергии в системах электроснабжения подробно рассмотрены на видео:

Домашние условия

Потребитель получил свои 220/380 В на счетчике. Теперь потерянная после счетчика электрическая энергия ложится на конечного потребителя.

Она складывается из:

  1. Потерь на при превышении расчетных параметров потребления.
  2. Плохой контакт в приборах коммутации (рубильники, пускатели, выключатели, патроны для ламп, вилки, розетки).
  3. Емкостной характер нагрузки.
  4. Индуктивный характер нагрузки.
  5. Использование устаревших систем освещения, холодильников и другой старой техники.

Рассмотрим мероприятия по снижению потерь электроэнергии в домах и квартирах.

П.1 - борьба с таким видом потерь одна: применение проводников соответствующих нагрузке. В существующих сетях необходимо следить за соответствием параметров проводов и потребляемой мощностью. В случае невозможности откорректировать эти параметры и ввести в норму, следует мириться с тем, что энергия теряется на нагрев проводов, в результате чего изменяются параметры их изоляции и повышается вероятность возникновения пожара в помещении. О том, мы рассказывали в соответствующей статье.


П.2 - плохой контакт: в рубильниках - это использование современных конструкций с хорошими неокисляющимися контактами. Любой окисел увеличивает сопротивление. В пускателях - тот же способ. Выключатели - система включения-выключения должна использовать металл, хорошо выдерживающий действие влаги, повышенных температур. Контакт должен быть обеспечен хорошим прижатием одного полюса к другому.

П.3, П.4 - реактивная нагрузка. Все электроприборы, которые не относятся к лампам накаливания, электроплитам старого образца имеют реактивную составляющую потребления электроэнергии. Любая индуктивность при подаче на нее напряжения сопротивляется прохождению по ней тока за счет возникающей магнитной индукции. Через время электромагнитная индукция, которая препятствовала прохождению тока, помогает его прохождению и добавляет в сеть часть энергии, которая является вредной для общих сетей. Возникают так называемые вихревые токи, которые искажают истинные показания электросчетчиков и вносят отрицательные изменения в параметры поставляемой электроэнергии. То же происходит и при емкостной нагрузке. Возникающие вихревые токи портят параметры поставленной потребителю электроэнергии. Борьба - использование специальных компенсаторов реактивной энергии, в зависимости от параметров нагрузки.

П.5. Использование устаревших систем освещения (лампочки накаливания). Их КПД имеет максимальное значение - 3-5%, а может быть и меньше. Остальные 95% идут на нагревание нити накала и как следствие на нагревание окружающей среды и на излучение не воспринимаемое человеческим глазом. Поэтому совершенствовать данный вид освещения стало нецелесообразным. Появились другие виды освещения - люминесцентные лампы, которые стали широко применяться в последнее время. КПД люминесцентных ламп достигает 7%, а светодиодных до 20%. Использование последних даст экономию электроэнергии прямо сейчас и в процессе эксплуатации за счет большого срока службы - до 50 000 часов (лампа накаливания - 1 000 часов).


Отдельно хотелось бы отметить, что сократить потери электрической энергии в доме можно с помощью . Помимо этого, как мы уже сказали, электроэнергия теряется при ее хищении. Если вы заметили, что , нужно сразу же предпринимать соответствующие меры. Куда звонить за помощью, мы рассказали в соответствующей статье, на которую сослались!

Рассмотренные выше способы уменьшения мощности потребления дают снижение нагрузки на электропроводку в доме и, как следствие, сокращение потерь в электросети. Как вы уже поняли, методы борьбы наиболее широко раскрыты для бытовых потребителей потому что не каждый хозяин квартиры или дома знает о возможных потерях электроэнергии, а поставляющие организации в своем штате держат специально обученных по этой теме работников, которые в состоянии бороться с такими проблемами.

Разделение потерь на составляющие может проводиться по разным критериям: характеру потерь (постоянные, переменные), классам напряжения, группам элементов, производственным подразделениям и т. п. Для целей анализа и нормирования потерь целесообразно использовать укрупненную структуру потерь электроэнергии, в которой потери разделены на составляющие исходя из их физической природы и специфики методов определения их количественных значений.

На основе такого подхода фактические потери могут быть разделены на четыре составляющие:

1) технические потери электроэнергии, обусловленные физическими процессами, происходящими при передаче электроэнергии по электрическим сетям и выражающимися в преобразовании части электроэнергии в тепло в элементах сетей. Теоретически технические потери могут быть измерены при установке соответствующих приборов, фиксирующих поступление и отпуск электроэнергии на рассматриваемом объекте. Практически же оценить действительное их значение с приемлемой точностью с помощью средств измерения нельзя. Для отдельного элемента это объясняется сравнительно малым значением потерь, сопоставимым с погрешностью приборов учета. Например, измерение потерь в линии, фактические потери энергии в которой составляют 2 %, с помощью приборов, имеющих погрешность ±0,5 %, может привести к результату от 1,5 до 2,5 %. Для объектов, имеющих большое количество точек поступления и отпуска электроэнергии (электрическая сеть), установка специальных приборов во всех точках и обеспечение синхронного снятия их показаний практически нереальна (особенно для определения потерь мощности). Во всех этих точках счетчики электроэнергии и так установлены, однако мы не можем сказать, что разность их показаний и есть действительное значение технических потерь. Это связано с территориальной разбросанностью многочисленных приборов и невозможностью обеспечения полного контроля правильности их показаний и отсутствия случаев воздействия на них других лиц. Разность показаний этих приборов представляет собой фактические потери, из которых следует выделить искомую составляющую. Поэтому можно утверждать, что измерить технические потери на реальном сетевом объекте нельзя. Их значение можно получить только расчетным путем на основе известных законов электротехники;

2) расход электроэнергии на СН подстанций, необходимый для обеспечения работы технологического оборудования подстанций и жизнедеятельности обслуживающего персонала. Этот расход регистрируется счетчиками, установленными на трансформаторах СН подстанций;

3) потери электроэнергии, обусловленные погрешностями ее измерения (недоучет электроэнергии, метрологические потери). Эти потери получают расчетным путем на основе данных о метрологических характеристиках и режимах работы приборов, используемых для измерения энергии (ТТ, ТН и самих электросчетчиков). В расчет метрологических потерь включают все приборы учета отпуска электроэнергии из сети, в том числе и приборы учета расхода электроэнергии на СН подстанций;

4) коммерческие потери, обусловленные хищениями электроэнергии, несоответствием показаний счетчиков оплате электроэнергии бытовыми потребителями и другими причинами в сфере организации контроля за потреблением энергии. Коммерческие потери не имеют самостоятельного математического описания и, как следствие, не могут быть рассчитаны автономно. Их значение определяют как разницу между фактическими потерями и суммой первых трех составляющих.

Три первые составляющие укрупненной структуры потерь обусловлены технологическими потребностями процесса передачи электроэнергии по сетям и инструментального учета ее поступления и отпуска. Сумма этих составляющих хорошо описывается термином -технологические потери. Четвертая составляющая — коммерческие потери - представляет собой воздействие «человеческого фактора» и включает в себя все проявления такого воздействия: сознательные хищения электроэнергии некоторыми абонентами с помощью изменения показаний счетчиков, потребление энергии помимо счетчиков, неуплату или неполную оплату показаний счетчиков, определение поступления и отпуска электроэнергии по некоторым точкам учета расчетным путем (при несовпадении границ балансовой принадлежности сетей и мест установки приборов учета) и т. п.

Структура потерь, в которой укрупненные составляющие потерь сгруппированы по различным критериям, приведена на рис. 1.1.

Каждая составляющая потерь имеет свою более детальную структуру.

Нагрузочные потери включают в себя потери:

  • в проводах линий передачи;
  • силовых трансформаторах и автотрансформаторах;
  • токоограничивающих реакторах;
  • заградителях высокочастотной связи;
  • трансформаторах тока;
  • соединительных проводах и шинах распределительных устройств (РУ) подстанций.

Последние две составляющие в силу отсутствия практики их поэлементных расчетов и незначительной величины обычно определяют на основе удельных потерь, рассчитанных для средних условий, и включают в состав условно-постоянных потерь.

Потери холостого хода включают в себя постоянные (не зависящие от нагрузки) потери:

  • в силовых трансформаторах (автотрансформаторах); компенсирующих устройствах (синхронных и тиристорных компенсаторах, батареях конденсаторов и шунтирующих реакторах);
  • оборудовании системы учета электроэнергии (ТТ, ТН, счетчиках и соединительных проводах);
  • вентильных разрядниках и ограничителях перенапряжения;
  • устройствах присоединения высокочастотной связи (ВЧ-связи); изоляции кабелей.

Потери, обусловленные погодными условиями (климатические потери) включают в себя три составляющие:

  • потери на корону в воздушных линиях электропередачи (BЛ) 110 кВ и выше;
  • потери от токов утечки по изоляторам BЛ;
  • расход электроэнергии на плавку гололеда.

Расход электроэнергии на СН подстанций обусловлен режимами работы различных (до 23) типов ЭП. Этот расход можно разбить на шесть составляющих:

  • на обогрев помещений;
  • вентиляцию и освещение помещений;
  • системы управления подстанцией и вспомогательные устройства синхронных компенсаторов;
  • охлаждение и обогрев оборудования;
  • работу компрессоров воздушных выключателей и пневматических приводов масляных выключателей;
  • текущий ремонт оборудования, устройства регулирования напряжения под нагрузкой (РПН), дистилляторы, вентиляцию закрытого распределительного устройства (ЗРУ), обогрев и освещение проходной (прочий расход).

Погрешности учета электроэнергии включают составляющие, обусловленные погрешностями измерительных ТТ, ТН и электрических счетчиков. Коммерческие потери также могут быть разделены на многочисленные составляющие, отличающиеся причинами их возникновения.

Все перечисленные составляющие подробно рассмотрены в последующих главах.

Критерии отнесения части электроэнергии к потерям могут быть физического и экономического характера. Некоторые специалисты считают, что расход электроэнергии на СН подстанций надо относить к отпуску электроэнергии, а остальные составляющие - к потерям. Расход на СН подстанций по характеру использования электроэнергии действительно ничем не отличается от ее использования потребителями. Однако это не является основанием считать его полезным отпуском, под которым понимают электроэнергию, отпущенную потребителям. Расход же электроэнергии на СН подстанций является внутренним потреблением сетевого объекта. Кроме того, при таком подходе необоснованно предполагается, что расход части энергии в элементах сетей на доставку другой ее части потребителям (технические потери), в отличие от расхода на СН подстанций, не является полезным.

Приборы учета не изменяют потоков мощности по сети, они лишь не совсем точно их регистрируют. Поэтому некоторые специалисты считают теоретически неверным относить недоучет электроэнергии, обусловленный погрешностями приборов, к потерям (ведь объем электроэнергии не изменяется от того, каким образом приборы ее регистрируют!).

Можно согласиться с теоретической правильностью таких рассуждений, как и — одновременно — с их практической бесполезностью. Определять структуру потерь нас заставляет не наука (для научных исследований все подходы имеют смысл), а экономика. Поэтому для анализа отчетных потерь следует применять экономические критерии. С экономических позиций потери - это та часть электроэнергии, на которую ее зарегистрированный полезный отпуск потребителям оказался меньше электроэнергии, полученной сетью от производителей электроэнергии. Под полезным отпуском электроэнергии понимается не только та электроэнергия, денежные средства за которую действительно поступили на расчетный счет энерго-снабжающей организации, но и та, на которую выставлены счета, то есть потребление энергии зафиксировано. Выставление счетов является практикой, применяемой к юридическим лицам, потребление энергии которыми фиксируется ежемесячно. В отличие от этого ежемесячные показания счетчиков, фиксирующих потребление энергии бытовыми абонентами, обычно неизвестны. Полезный отпуск электроэнергии бытовым абонентам определяют по поступившей за месяц оплате, поэтому вся неоплаченная энергия автоматически попадает в потери.

Расход электроэнергии на СН подстанций не является продукцией, оплачиваемой конечным потребителем, и с экономической точки зрения ничем не отличается от расхода электроэнергии в элементах сетей на передачу остальной ее части потребителям.

Занижение объемов полезно отпущенной электроэнергии приборами учета (недоучет) имеет такой же экономический характер, как и две описанные выше составляющие. То же самое можно сказать и о хищениях электроэнергии. Поэтому все четыре описанные выше составляющие потерь с экономической точки зрения одинаковы.

Фактические потери являются строго детерминированной величиной, жестко связанной с денежными средствами, полученными за проданную энергию. Задача «исправления» отчетных потерь на основе учета погрешностей счетчиков бессмысленна, так как не может привести к изменению объема полученных (и недополученных) денежных средств.

Потерянный рубль остается потерянным независимо от того, по какой причине и где он потерян. Но для того, чтобы принять наиболее эффективные меры по снижению потерь, необходимо знать, где и по каким причинам они происходят. В связи с этим основной задачей расчета и анализа потерь является определение их детальной структуры, выявление конкретных очагов потерь и оценка возможностей их снижения до экономически оправданных значений. Одним из методов такой диагностики потерь является анализ небалансов электроэнергии на объектах (подстанциях, предприятиях сетей) и в сетевых организациях.



Случайные статьи

Вверх