Измерительных трансформаторов напряжения для чего. Измерительный трансформатор

Понятие измерительного трансформатора напряжения

Для измерения переменного напряжения в сетях высокого напряжения его предварительно понижают до необходимого уровня: (обычно до 100В) при помощи трансформатора напряжения.

Схема включения измерительного трансформатора напряжения

Ко вторичной обмотке измерительного трансформатора напряжения присоединяют вольтметры, ваттметры и приборы автоматического управления. Сопротивление нагрузки вторичной обмотки измерительного трансформатора напряжения должно быть меньше некоторого нормированного значения. Сам измерительный трансформатор напряжения должен быть спроектирован таким образом, чтобы его вторичное приведенное напряжение при изменении нагрузки от холостого хода до номинального значения изменялось как можно меньше.

Классификация измерительных трансформаторов

Измерительные трансформаторы напряжения подразделяются по числу фаз на однофазные и трехфазные;

По числу обмоток измерительные трансформаторы напряжения делятся на двухобмоточные и трехобмоточные;

По способу охлаждения - на масляные и сухие;

По роду установки - для наружной и внутренней установки.

Однофазные измерительные трансформаторы напряжения на 6-10 кВ для внутренней установки выпускают в основном с литой изоляцией. Обмотки или вся активная часть у таких измерительных трансформаторов напряжения залиты эпоксидной смолой. Они более надежны в работе, практически не требуют ухода, имеют меньшую массу и габариты.

Измерительные трансформаторы напряжения на 6-10 кВ и выше для наружной установки изготовляют с масляным заполнением. Их активную часть помешают в металлический бак или фарфоровый корпус, заполненный трансформаторным маслом.

Измерительные трансформаторы напряжения отличаются малой мощностью и большим коэффициентом трансформации; их изготовляют только как понижающие с классами точности 0,2; 0,5; 1 и 3, указывающими предельно допустимую погрешность в процентах, которую вносит трансформатор в номинальное значение коэффициента трансформации.

Измерительные трансформаторы напряжения выпускают с номинальными напряжениями обмоток высшего напряжения, соответствующими стандартным напряжениям электрических сетей: 0,38; 0,66; 3; 6; 10; 20; 35; 110 кВ и т. д., а номинальные напряжения обмоток низшего на: 100; 100/√3 или 100/3 В. Схемы соединения обмоток трансформаторов напряжения опре-делены стандартом и должны соответствовать нулевой группе соединения.

Устройство измерительного трансформатора напряжения

Устройство измерительного трансформатора напряжения подобно устройству силового трансформатора небольшой мощности. Первичную обмотку измерительного трансформатора напряжения с большим числом витков включают в сеть, напряжение в которой измеряют или контролируют.

Вторичная обмотка с меньшим числом витков замыкается на прибор с большим сопротивлением. Таким прибором может быть вольтметр, параллельная обмотка ваттметра, счетчика или какого-либо иного измерительного прибора или реле. По отношению к из-мерительному прибору вторичное напряжение должно совпадать по фазе с первичным, что достигается соответствующим соединением вторичной обмотки измерительного трансформатора напряжения с прибором. Это необходимо при измерении мощности и энергии.

Сопротивление вольтметров, параллельных обмоток ваттметров, счетчиков и других измерительных приборов и реле сравнительно велико (составляет тысячи ом). Поэтому ток в цепи вторичной обмотки измерительного трансформатора напряжения весьма мал и режим работы его близок к режиму холостого хода силового трансформатора.

Так как при малых токах в обмотках трансформатора падения напряжения в сопротивлениях этих обмоток также малы, напряжения на зажимах первичной и вторичной обмоток практически равны э. д. с, а отношение этих напряжений равно коэффициенту трансформации.

Структура условного обозначения измерительных трансформаторов напряжения.

Обозначения типов сухих и масляных измерительных трансформаторов напряжения состоят из букв и цифр:
например, НОС-0,5; HOAV 35-66; ЗНОМ-35-65; НТМИ-10; НКФ-110-58

  • Н - напряжение,
  • О - однофазный,
  • Т - трехфазный,
  • М - масляный,
  • К - каскадный или с компенсационной обмоткой,
  • 3 - с заземленным вводом высшего напряжения,
  • И - с обмоткой для контроля изоляции,
  • Ф - в фарфоровом корпусе;
  • первая цифра после букв обозначает напряжение, вторая - год разработки.

На щитках трансформатора дробью указывают:

  • в числителе - типовую мощность, кВА;
  • в знаменателе - напряжение, кВ.

В релейной защите измерительные трансформаторы напряжения предназначены:

Для передачи информации о величине напряжения на защищаемом элементе электрической сети в измерительные органы РЗ;

Для понижения первичного напряжения сети до величин, приемлемых для нормального функционирования цепей напряжения измерительных органов устройств РЗ;

Для изолирования низковольтных цепей устройств РЗ от высоковольтных цепей защищаемых элементов.

Измерительные трансформаторы напряжения (ТН) имеют ряд исполнений, основными из которых являются:

Электромагнитные ТН;

- ёмкостные ТН;

Измерительные ТН каскадного типа.

Электромагнитные ТН по принципу действия и конструктивному выполнению аналогичны силовым трансформаторам. Трансформатор напряжения состоит из стального сердечника (магнитопровода) и двух обмоток – первичной W 1 и вторичной W 2 , изолированных друг от друга и от магнитопровода. Сердечник ТН набирается из тонких пластин трансформаторной стали. Первичная обмотка W 1 имеет большое число витков (несколько тысяч). Вторичная обмотка W 2 имеет значительно меньшее число витков. К первичной обмотке ТН подводится измеряемое (контролируемое) фазное или междуфазное напряжение U 1 от защищаемого элемента. Вторичное напряжение U 2 , пропорциональное первичному, подаётся в устройство РЗ или на измерительные приборы (вольтметры, ваттметры).

Первичная обмотка W 1 включается непосредственно в сеть высокого напряжения. На станциях и подстанциях трансформатор напряжения своей первичной обмоткой (W 1) подключается к шинам подстанции (станции) или к иным тоководам. Ко вторичной обмотке W 2 трансформатора напряжения подключается сеть низкого переменного напряжения, с помощью которой вторичное напряжение U 2 подаётся на входные зажимы различных реле.

Под действием напряжения сети U 1 по первичной обмотке ТН проходит ток I 1 , создающий в сердечнике магнитный поток Ф 1 . Поток Ф 1 , пересекая витки вторичной обмотки, индуцирует в ней ЭДС Е 2 . При

Рисунок 1.1 Общее устройство и схема включения измерительного ТН. Маркировка вводов однофазного двухобмоточного ТН

разомкнутой вторичной цепи (режим работы ТН – холостой ход) значение напряжения на зажимах ах U 2 xx равно значению ЭДС Е 2 . В свою очередь, действующее значение ЭДС Е 2 определяют по формуле

, (1.1)

где - магнитный поток намагничивания сердечника в случае холостого хода, когда I 2 = 0, .

Врежиме ХХ значение первичного токаI 1 , а следовательно и Ф 1 , ограничивается полным сопротивлением первичной обмотки Z 1 . Поскольку число витков первичной обмотки велико, то активное и индуктивное сопротивления первичной обмотки ТН также велики. Полное сопротивление Z 1 первичной обмотки определяется из треугольника сопротивлений.


(1.2)

Из сказанного выше можно сделать вывод: трансформатор напряжения, работающий в режиме ХХ, не оказывает на первичную цепь заметного шунтирующего действия.

В нагрузочном режиме, когда ко вторичной обмотке ТН подключены реле и протекает ток I 2 , в сердечнике возникает магнитный поток Ф 2 , пропорциональный току I 2 и встречный потоку Ф 1 . В установившемся режиме (при наличии нагрузки) в результате геометрического сложения потоков Ф 1 и Ф 2 в сердечнике ТН устанавливается единый магнитный поток намагничивания Ф нам. В нагрузочном режиме значение тока I 1 несколько больше, чем в режиме ХХ. Однако, и в этом режиме (когда к ТН подключены реле) трансформатор напряжения не оказывает на первичную цепь заметного шунтирующего действия.

В режиме ХХ напряжение U 2хх во столько раз меньше первичного, во сколько раз число витков первичной обмотки больше числа витков вторичной обмотки, т.е.

Отношение чисел витков первичной и вторичной обмоток называется витковым коэффициентом трансформации

Учитывая последнее выражение, можно записать:

Если ко вторичной обмотке ТН подключены реле и (или) измерительные приборы, то напряжение на её зажимах ах U 2 будет меньше ЭДС на величину падения напряжения в сопротивлении вторичной обмотки. Это падение напряжения невелико, и в расчётах не учитывается. Поэтому принимают


(1.6)

§ 87. ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ

Измерительные трансформаторы делятся на трансформаторы напряжения и трансформаторы тока. Их применяют в цепях пере­менного тока для расширения пределов измерения измерительных приборов и для изоляции этих приборов от токоведующих частей, Находящихся под высоким напряжением.

Трансформаторы напряжения (рис. 106, а) конструктивно пред­ставляют собой обычные трансформаторы малой мощности. Пер­ечная обмотка такого трансформатора включается в два линейных провода сети, напряжение которой измеряется или контроли­руется; во вторичную обмотку включают вольтметр или параллельную обмотку ваттметра, счетчика и т. п. Коэффициент трансформации трансформатора напряжения выбирают таким, чтобы при номинальном первичном напряжении напряжение вторичной обмотки было 100 в.

Работа трансформатора напряжения подобна режиму холостого хода обычного силового трансформатора, так как сопротивление вольтметра или параллельной обмотки ваттметра, счетчика и т. п. велико и током во вторичной обмотке можно пренебречь.

Включение во вторичную обмотку большого числа измерительных приборов нежелательно. Если параллельно вольт­метру, включенному во вторичную обмот­ку трансформатора, подсоединить еще один вольтметр или параллельную обмот­ку ваттметра, счетчика и т. п., то ток во вторичной обмотке трансформатора уве­личится, что вызовет падение напряжения на зажимах вторичной обмотки, и точность показания приборов понизится.

Трансформаторы тока (рис. 106,6) служат для преобразования переменного тока большой силы в ток малой силы и изготовляются таким образом, чтобы при номинальной силе тока первичной цепи во вторичной обмотке сила тока была 5 а.

Первичная обмотка трансформатора тока включается в разрез линейного провода (последовательно с нагрузкой), сила тока в ко­тором измеряется; вторичная обмотка замкнута на амперметр или на последовательную обмотку ваттметра, счетчика и т. п., т. е. на измерительный прибор с малым сопротивлением.

Режим работы трансформатора тока существенно отличен от режима работы обычного трансформатора. В обычном трансфор­маторе при изменении нагрузки магнитный поток в сердечнике остается практически неизменным, если постоянно приложенное напряжение.

Если в обычном трансформаторе уменьшить нагрузку, т. е. силу тока во вторичной обмотке, то и в первичной обмотке сила тока уменьшится и, если вторичную обмотку разомкнуть, то сила тока в первичной обмотке уменьшится до тока холостого хода I 0 .

При работе трансформатора тока его вторичная обмотка замкнута на измерительный прибор с малым сопротивлением и ре­жим работы трансформатора близок к короткому замыканию. По­этому магнитный поток в магнитопроводе трансформатора мал.

Если разомкнуть вторичную обмотку трансформатора тока, то тока в этой обмотке не будет, тогда как в первичной обмотке сила тока остается неизменной.

Таким образом, при разомкнутой вторичной обмотке трансформатора тока магнитный поток в магнитопроводе, возбужденный током первичной обмотки и не встречающий размагничивающего

действия тока вторичной обмотки, окажется очень большим и, сле­довательно, э. д. с. вторичной обмотки, имеющей большее число витков, достигает большой величины, опасной для целости изоля­ций этой обмотки и для обслуживающего персонала. Поэтому при выключении измерительных приборов из вторичной обмотки транс­форматора тока эту обмотку необходимо замкнуть накоротко.

Включение большого числа измерительных приборов во вторич­ную обмотку трансформатора тока снижает точность измерения.

Конструкции трансформаторов тока в зависимости от назначе­ния чрезвычайно разнообразны и делятся на стационарные и пере­носные.

При работе измерительных трансформаторов напряжения и тока возможен пробой изоляции их первичных обмоток и, как след­ствие пробоя, электрическое соединение первичной обмотки с сер­дечником или со вторичной обмоткой.

Для безопасности обслуживания сердечники и вторичные обмот­ки измерительных трансформаторов заземляются.

Контрольные вопросы

1. Объясните назначение и принцип действия трансформатора.

2. Какую форму имеют магнитопроводы однофазных трансформаторов?

3. Каково устройство магнитопровода и обмоток трансформаторов?

4. Каким выражением определяется действующее значение э. д. с. обмотки трансформатора?

5. Изменится ли ток в первичной обмотке трансформатора, если при изме­нении нагрузки увеличился ток во вторичной обмотке?

6. Что называется коэффициентом трансформации?

7. Как производят опыты холостого хода и короткого замыкания трансфор­матора и какие параметры его определяются из этих опытов?

8. При какой нагрузке трансформатор имеет наибольший к. п. д.?

9. Каковы достоинства и недостатки автотрансформаторов по сравнению с трансформаторами?

10. Поясните назначение и схемы включения измерительных трансформаторов.

Курсовая работа

Измерительные трансформаторы тока и напряжения


Введение

Измерительные трансформаторы тока

Испытание трансформаторов тока

2 Изменение формы вторичного тока трансформатора тока при возрастании нагрузки

6 Контроль вторичных цепей трансформаторов тока

Порядок изучения трансформатора тока

Измерительные трансформаторы напряжения

Испытание трансформаторов напряжения

2 Контроль состояния изоляции трансформаторов напряжения

Порядок изучения трансформатора напряжения

Библиографический список


ВВЕДЕНИЕ


В энергосистемах и на предприятиях необходим постоянный контроль режимов работы электрооборудования. Такой контроль производится для учёта электроэнергии, для ведения режимов работы электростанций и сетей и для защиты электрооборудования при авариях. С этой целью устанавливаются измерительные трансформаторы тока и напряжения.


1. ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ ТОКА


1 Назначение и режим работы трансформатора тока


Измерительный трансформатор тока представляет собой аппарат, предназначенный для подключения токовых измерительных приборов, устройств релейной защиты и автоматики .

В электроустановках трансформаторы тока выполняют три функции:

) преобразование переменного тока к стандартным значениям 5 А или 1 А;

) изолирование вторичных токовых цепей от высокого напряжения первичной цепи;

) защиту вторичных устройств и персонала от высокого напряжения.

Вторичные токовые цепи трансформаторов тока заземляются в одной точке. Это предотвращает появление высокого напряжения во вторичных цепях при повреждении изоляции.

Трансформатор тока состоит из первичной обмотки 1 и вторичной обмотки 2, которые расположены на магнитопроводе 3 (рис.1.1, а). Обозначения трансформаторов тока приведены на рис.1.1, б и в табл. 1.1 .


Таблица 1.1 Обозначение выводов обмоток трансформатора тока


Первичная обмотка трансформатора тока последовательно включается в силовую цепь. К вторичной обмотке последовательно подключаются амперметры, токовые обмотки варметров, ваттметров, счётчиков активной и реактивной энергии, токовые цепи релейной защиты и автоматики.

Трансформатор тока является источником тока, следовательно, вторичная обмотка выполняется с большим внутренним сопротивлением. Сопротивление приборов, подключённых к вторичной обмотке трансформатора тока должно быть небольшое. Если сопротивление подсоединённых приборов больше допустимой величины, то оно значительно повлияет на величину вторичного тока. Трансформатор тока не будет работать в заданном классе точности.

Остановимся подробно на режиме работы трансформатора тока. Протекающий по первичной обмотке ток I1 создаёт в сердечнике магнитный поток Ф1. Наводимая во вторичной обмотке электродвижущая сила (ЭДС) взаимоиндукции, вызывает ток I2, который создаёт свой магнитный поток Ф2, направленный встречно потоку Ф1. Величина сопротивления вторичной нагрузки небольшая, поэтому потери энергии во вторичной нагрузке незначительны. Следовательно, поток Ф2 немного меньше потока Ф1, а результирующий магнитный поток

Ф0 = Ф1 - Ф2 (1.1)


составляет всего несколько процентов от магнитного потока Ф1. Для такого магнитного потока не требуется магнитопровод большого сечения. Кроме того, в этом случае трансформатор тока обладает незначительным индуктивным сопротивлением, то есть не влияет на величину тока, протекающего в силовой цепи.

При размыкании вторичной обмотки исчезает ток I2, а, следовательно, и поток Ф2.Результирующий поток Ф0 в соответствии с выражением (1.1) возрастает до первичного потока Ф1. Из-за небольшого сечения магнитопровода, выбранного по потоку Ф0, происходит насыщение магнитопровода. Форма магнитного потока из синусоидальной Ф0 (рис. 1.2) становится трапециидальной Ф0ХХ.

Величина напряжения на выводах вторичной обмотки пропорциональна скорости изменения магнитного потока ФО (ФОХХ)



Отсюда при размыкании вторичной обмотки форма напряжения на её выводах становится пикообразной. Значение напряжения на разомкнутой вторичной обмотке при большом рабочем токе может достигать нескольких киловольт.

Запрещается размыкать вторичную обмотку трансформатора тока под нагрузкой. Высокое напряжение опасно для персонала и, кроме того, может привести к повреждению изоляции трансформатора тока. Из-за насыщения сердечника большим магнитным потоком происходит его перегрев. Повреждение трансформатора тока может вызвать замыкание в первичной цепи. При необходимости произвести переключения в схеме под током предварительно закорачивают вторичную обмотку трансформатора тока.

2 Погрешности трансформатора тока


Коэффициент трансформации трансформатора тока определяется следующим образом. Под воздействием протекающих по обмоткам токов, в первичной обмотке действует магнитодвижущая сила

1 = I1·W1, (1.3)


а во вторичной обмотке -

2 = I2·W2. (1.4)


В случае идеального трансформатора тока при отсутствии потерь энергии в трансформаторе и в нагрузке магнитодвижущие силы F1 и F2 равны между собой. В этом случае

1·W1 = I2·W2, (1.5)


отсюда коэффициент трансформации равен:


На векторной диаграмме (рис.1.3) показаны токи I1 и I0, а также I2ПР., повёрнутый на 1800 и приведённый по величине с учётом коэффициента трансформации к первичному току. Ток намагничивания I0 определяет потери энергии в сердечнике трансформатора тока, то есть его погрешность.

Различают два вида погрешности: а) токовую; б) угловую.

Токовая погрешность - это выраженное в процентах отношение разности между приведённым вторичным током и первичным током к первичному току



Угловая погрешность - это угол? между первичным током I1 и повёрнутым на 1800 вектором I2. Угловая погрешность считается положительной, если вектор вторичного тока опережает вектор первичного тока.

На величину токовой и угловой погрешности трансформатора тока влияют:

а) материал и размеры сердечника;

б) число первичных ампер-витков;

в) сопротивление вторичной обмотки

г) величина первичного тока.

Качество материала магнитопровода определяется потерями на вихревые токи и гистерезис на единицу объема материала. Качество материала магнитопровода характеризует кривая намагничивания (рис.1.4.а). В точке М магнитная проницаемость µ имеет наибольшее значение. Следовательно, при напряжённости магнитного поля Н, соответствующего точке М, в магнитопроводе будут наименьшие потери и наибольшая точность трансформатора тока. Величина напряжённости магнитного поля зависит от первичного тока I1. Магнитопровод изготавливается из электротехнической холоднокатанной стали, пермаллоя или аморфного железа.

На рис 1.4.б показаны зависимости токовой f и угловой погрешности? от величины первичного тока I1 и вторичной нагрузки Z2.

При возрастании величины вторичной нагрузки (Z2.2 > Z2.1) происходит увеличение токовой и угловой погрешностей.

Способы уменьшения погрешностей:

а) увеличение первичных ампер-витков;

б) увеличение сечения сердечника;

в) уменьшение средней длины магнитопровода;

г) улучшение магнитных свойств сердечника;

д) уменьшение сопротивления вторичной нагрузки;

е) подгонка витков.

Полное уравнение магнитодвижущих сил трансформатора тока имеет вид

1·W1 = I2·W2 + I0·W1. (1.8)


Из этой формулы следует, что

1·W1 > I2·W2. (1.9)

Следовательно, ток I2 необходимо увеличить для корректировки потерь в трансформаторе тока. В трансформаторе тока выполняется приближённое равенство магнитодвижущих сил I1·W1 ? I2·W2. При уменьшении числа витков вторичной обмотки W2 увеличивается вторичный ток I2. Это называется подгонка числа витков трансформатора тока с целью повышения его точности. Токовая и угловая погрешности в отличие от графиков на рис. 1.4, б уменьшаться и будут находиться в допускаемой области погрешностей, показанной на рис. 1.5 . Характерная форма токовой и угловой погрешности показана пунктирной линией.

Классы точности трансформатора тока: 0,2S; 0,2; 0,5S; 0,5; 1; 3; 5Р; 10Р. Как видно из табл. 1.2 , наименование класса точности соответствует предельной токовой погрешности трансформатора тока.

Как видно из второго столбца табл. 1.2 трансформаторы тока с классом точности с буквой S имеют нижний предел измерения первичного тока с допускаемой погрешностью 1 % от номинальной величины первичного тока. Трансформаторы тока c классом точности без буквы S имеют нижний предел 5 %. Пределы допускаемых погрешностей трансформатора тока зависят от вторичной нагрузки трансформатора тока и от величины первичного тока.


Таблица 1.2 Пределы допускаемых погрешностей для классов точности 0,2 и 0,5

Класс точностиПервичный ток, % номинального значенияПредел допускаемой погрешностиПредел нагрузки, % номинального значениятоковой, %угловой0,25 20 100-120±0,75 ±0,35 ±0,2±30" ±15" ±10"25-1000,2S1 5 20 100 120±0,75 ±0,35 ±0,2 ±0,2 ±0,2±30" ±15" ±10" ±10" ±10"25-1000,55 20 100-120±1,5 ±0,75 ±0,5±90" ±45" ±30"25-1000,5S1 5 20 100 120±0,15 ±0,75 ±0,5 ±0,5 ±0,5±90" ±45" ±30 ±30" ±30"25-100


Рассмотрим 2 столбец табл. 1.2. В классах точности 0,2S и 0,5S трансформатор тока находится в заданном классе точности 0,2 или 0,5 в интервале первичного тока от 20 % до 120 %. Трансформаторы тока с классами точности 0,2 и 0,5 находятся в заданном классе точности при первичном токе в пределах 100 - 120 %.

Величина вторичной нагрузки трансформатора тока должна быть в пределах от 25 до 100 % номинального значения для работы в классе точности (см. столбец 5 табл. 1.2.).


3 Конструкции трансформаторов тока


Классификация трансформаторов тока :

Род установки:

б) наружный, для установки вне помещения;

в) встроенный (В) устанавливается внутри корпуса силовых трансформаторов или выключателей, внутри экранов токопроводов, в элегазовом оборудовании.

Способ установки:

а) проходной (П), используется для прохождения токоведущей части через перегородки;

б) опорный (О), применяется для крепления токоведущей части, выполняя функцию опорного изолятора.

Конструкция первичной обмотки:

а) одновитковая - шинная (Ш), земляная (З), не -имеющие собственной первичной обмотки, её функцию выполняет шина или трёх жильный кабель;

б) одновитковая - стержневая, с первичной обмоткой в виде прямолинейного стержня;

в) двух витковая, т.е. обмотка состоит из трубы и стержня, которые могут соединяться параллельно или последовательно;

г) многовитковая;

д) звеньевого типа (З), т.е. первичная обмотка состоит из нескольких секций. Секции соединяются последовательно или параллельно;

е) разъёмная (Р);

ё) каскадная (К).

Вид изоляции:

а) с фарфоровой покрышкой (Ф);

б) газонаполненный (Г);

в) литая (Л);

г) маслонаполненный (М);

д) в пластмассовом корпусе (П).

Принцип работы:

а) трансформатор с магнитопроводом;

б) воздушный трансформатор

в) оптический трансформатор.

В трансформаторах тока с литой и элегазовой изоляцией для изменения коэффициента трансформации переключения производятся в первичной обмотке, которая выполнена двух виткового типа (рис. 1.5). Первичная обмотка состоит из трубы и стержня. Для создания одного витка они включаются параллельно. На рис. 1.5, а показан вид сбоку трансформатора тока. Пунктиром условно показан корпус трансформатора тока. Для создания двух витков труба и стержень соединяются последовательно с помощью внешнего полукольца. На рис. 1.5, б показан вид сверху трансформатора тока.

Трансформаторы тока с магнитопроводом имеют бóльшую номинальную мощность, но из-за нелинейности кривой намагничивания ухудшается класс точности при небольших рабочих токах и при токах превышающих номинальное значение.

Воздушный трансформатор тока выполняется без магнитопровода. Следовательно, производится линейное преобразование первичного тока во вторичный.

В оптическом трансформаторе тока вокруг токоведущей части 1 располагается круговой поляризатор 2. Электронно-оптический блок посылает по световодам два световых сигнала. Эти сигналы, направленные встречно по отношению друг к другу, проходят в поляризаторе 2 несколько раз вокруг токоведущей части. Магнитное поле, создаваемое током протекающим в проводнике, изменяет скорость распространения света в световоде поляризатора. При этом замедляется один световой сигнал и ускоряется другой в зависимости от направления магнитного поля по отношению к световому сигналу (эффект Фарадея). Как только линейно поляризованные сигналы завершают свой путь вокруг проводника, они отражаются в зеркале 3 и идут обратно по оптоволокну 4 к электронно-оптическому блоку 5. Затем подача сигнала в поляризатор повторяется. Таким образом, при отсутствии тока через проводник два световых сигнала синхронизированы по фазе (рис. 1.6, б). Когда ток проходит через проводник магнитное поле сдвигает световые сигналы в противоположных направлениях (рис. 1.6, в). В электронно-оптическом блоке 5 производится измерение разности фаз? двух световых сигналов. Преимуществами оптического трансформатора тока являются высокая точность и цифровой выходной сигнал.

Рассмотрим несколько примеров обозначений трансформаторов тока.

ТЛ-0,66 - трансформатор тока, с литой изоляцией, номинальное напряжение 0,66 кВ.

ТШЛ-0,66 - трансформатор тока, шинный, с литой изоляцией, номинальное напряжение 0,66 кВ.

ТОЛ-10 - трансформатор тока, опорный, с литой изоляцией, номинальное напряжение 10 кВ.

ТЛО-10 - трансформатор тока, с литой изоляцией, опорный, номинальное напряжение 10 кВ.

ТЛП-10 - трансформатор тока, проходной, с литой изоляцией, номинальное напряжение 10 кВ.

ТЗЛ-10 - трансформатор тока, для защиты от замыканий на землю, с литой изоляцией, номинальное напряжение 10 кВ.

ТВГ-24 - трансформатор тока, встроенный, генераторный, номинальное напряжение 24 кВ.

ТШВ-20 - трансформатор тока, шинный, встраиваемый в токопроводы, номинальное напряжение 10 кВ.

ТБМО-35 - трансформатор тока, баковый, маслонаполненный, одноступенчатый, номинальное напряжение 35 кВ.

ТГФ-110 - трансформатор тока, элегазовый, с фарфоровой покрышкой, номинальное напряжение 110 кВ.

ТФЗМ-220 - трансформатор тока, с фарфоровой покрышкой, с обмотками звеньевого типа, номинальное напряжение 220 кВ.

Первичная обмотка состоит из нескольких секций, которые соединяются последовательно или параллельно.


4 Схемы соединений трансформаторов тока


Питание измерительных приборов, устройств релейной защиты и автоматики производится по различным схемам соединений вторичных обмоток трансформаторов тока.

При большой вторичной нагрузке трансформатора тока может не обеспечиваться требуемый класс точности. В этом случае последовательно включаются первичные и вторичные обмотки двух трансформаторов тока, установленные на одной фазе. Величина вторичного тока остаётся неизменной (рис.1.7).

При параллельном согласном соединении вторичных обмоток трансформаторов величина тока в нагрузке (А3) равна сумме токов в каждом трансформаторе (А1) и (А2) (рис. 1.8). Например, эта схема соединений применяется на распределительном устройстве при подключении присоединений через два выключателя для измерения тока в присоединении.

На рис.1.9 показана схема соединений вторичных обмоток трансформаторов тока в звезду с нулевым проводом. В нулевом проводе ток равен геометрической сумме токов в фазах.

При соединении вторичных обмоток трансформаторов тока в неполную звезду (рис.1.10) ток в нулевом проводе равен их геометрической сумме с обратным знаком


0 = -(?а + ?С). (1.10)


Следовательно, в симметричном режиме работы первичной сети


0 = - ?в. (1.11)


Достаточно устанавливать трансформаторы тока в двух фазах для измерения трёх фазных токов в нормальном режиме работы сети. В сетях с изолированной нейтралью не бывает однофазных коротких замыканий, поэтому для релейной защиты не требуется установка трансформаторов тока в трёх фазах.

Схема соединений вторичных обмоток трансформаторов тока в треугольник, а приборов в звезду показана на рис.1.11. В приборе А1 протекает ток, равный геометрической разности токов в фазах А и В.

Рассмотрим схему соединения вторичных обмоток на разность токов двух фаз (рис.1.12). Ток через прибор равен


А - ?с. (1.12)


При симметричном первичном токе ток во вторичной цепи можно определить из векторной диаграммы трёхфазной сети. Он будет в раз больше фазного тока.

Параллельное соединение вторичных обмоток трансформатора тока образует фильтр тока нулевой последовательности (рис.1.13). Ток через прибор А0 равен току замыкания на землю.


2. ИСПЫТАНИЕ ТРАНСФОРМАТОРОВ ТОКА


1 Проверка погрешности трансформатора тока


Производится изучение токовой погрешности трансформатора тока. Последовательно с испытуемым трансформатором тока соединён образцовый трансформатор (рис.2.1).

Показания амперметра во вторичной обмотке образцового трансформатора тока принимаются за точные значения.

Проверка погрешности трансформатора тока производится совместно с изучением формы вторичного тока в пункте 2.2.

Определяется зависимость вторичного тока от величины первичного тока. К вторичной обмотке испытуемого трансформатора тока подключается только амперметр. С помощью автотрансформаторов АТ1 и АТ2 изменяется ток во вторичной цепи от 0,1 А до номинального значения 5 А. По полученным данным производится расчёт токовой погрешности в зависимости от величины первичного тока в относительных единицах.

Снимается зависимость величины вторичного тока в цепи испытуемого трансформатора тока от величины вторичной нагрузки. С помощью автотрансформаторов АТ1 и АТ2 поддерживается постоянное значение показаний амперметра, подключённого к образцовому трансформатору тока. В качестве нагрузки поочерёдно используется амперметр, активные сопротивления R1-R3 и вторичная обмотка одного из трансформаторов тока, расположенного в центре стенда. Переключения производятся перемычками, как показано на рис. 2.1. По полученным данным рассчитывается токовая погрешность по отношению к показаниям амперметра на образцовом трансформаторе тока и строится график погрешности в функции сопротивления нагрузки. С помощью экстраполяции определяется сопротивление вторичной обмотки трансформатора тока и сравнивается с допустимым сопротивлением нагрузки в классе точности 10Р равным 1 Ом. Подключение вторичной обмотки трансформатора тока проводятся с учебной целью для определения соотношения между сопротивлением вторичной обмотки трансформатора тока и величиной допустимой вторичной нагрузки.


2.2 Изменение формы вторичного тока трансформатора тока при возрастании нагрузки


Отклонение формы кривой вторичного тока от синусоидальной формы вносит дополнительную токовую погрешность. Для контроля искажения формы кривой вторичного тока, происходящего из-за насыщения магнитопровода, в схеме на рис. 2.1 используется осциллограф. Для каждого значения нагрузки по осциллографу фиксируется форма кривой вторичного тока. Определяется величина нагрузки, при которой начинается искажение формы кривой вторичного тока.


3 Проверка коэффициента трансформации трансформатора тока


Проверка коэффициента трансформации в условиях эксплуатации при небольших первичных токах производится с применением амперметров по схеме рис.2.1. Зная коэффициент трансформации образцового трансформатора тока, проверяют коэффициент трансформации испытуемого трансформатора тока. У трансформаторов тока с большим первичным номинальным током проверку удобно производить с использованием вольтметров (рис.2.2) . Необходимо использовать высокоомный вольтметр V2, так как первичная обмотка трансформатора тока имеет очень низкое сопротивление. Коэффициент трансформации равен отношению показаний вольтметров V1 к V2. При этом, перемычка, показанная на рис. 2.2, не устанавливается.

4 Контроль витковой изоляции трансформатора тока и повреждений в стали магнитопровода


Для определения виткового замыкания в трансформаторе тока и повреждений в стали магнитопровода снимают вольтамперную характеристику трансформатора тока. Она представляет собой зависимость тока намагничивания I0 от величины приложенного напряжения к обмотке. Вольтамперная характеристика снимается при разомкнутой первичной обмотке (рис. 2.2). При витковом замыкании или повреждении в стали магнитопровода, будут протекать токи, магнитное поле которых размагничивает магнитопровод. Это отражается на вольтамперной характеристике. На производстве оценка исправности трансформатора тока производится путём сравнения вольтамперной характеристики, снятой при испытаниях, с типовой характеристикой для данного типа трансформатора тока. Допускается отклонение кривой намагничивания от типовой характеристики не более чем на 10 % .

Вольтамперная характеристика (кривая намагничивания) снимается при снятой перемычке, т.е. разомкнутой первичной обмотке. Затем снимается характеристика при замкнутой перемычкой первичной обмотке. Этим моделируется неисправность в виде короткозамкнутого витка. Строятся две вольтамперные характеристики, и определяется отклонение характеристик между собой.


5 Проверка полярности обмоток трансформатора тока


Под полярностью обмоток понимается определение начала и конца первичных и вторичных обмоток у встроенных трансформатора тока, а так же проверка маркировок обмоток трансформаторов тока. Проверка полярности необходима для правильного подключения счётчиков электроэнергии, ваттметров, варметров, направленных устройств релейной защиты и автоматики, то есть приборов и устройств, контролируемый параметр которых зависит от угла между током и напряжением. Маркировка проверяется у всех трансформаторов тока, даже не имеющих первичную обмотку.

Для проверки полярности обмоток необходим источник постоянного тока и гальванометр (рис. 2.3). Во время подключения источника постоянного тока во вторичной обмотке трансформируется импульс тока, который приводит к кратковременному отклонению стрелки гальванометра. При правильной полярности обмоток в соответствие с маркировкой во время кратковременного включения ключа К стрелка гальванометра отклоняется вправо, а при размыкании ключа К - влево.

2.6 Контроль вторичных цепей трансформаторов тока


Нарушение контактов или обрывы проводников во вторичных цепях приводят к изменению величины тока во вторичных цепях трансформатора тока. В зависимости от места и вида повреждения, а также от режима работы первичной сети можно выявить причину отказа релейной защиты и автоматики.

Для диагностики вторичных цепей собирается одна из схем соединений вторичных обмоток трансформаторов тока (рис. 1.8 - 1.12).

В качестве примера на рис. 2.4 показаны режимы для схемы соединения вторичных обмоток трансформаторов тока в неполную звезду. Перемычками П1 - П4 создаются различные режимы работы первичной и вторичной цепи. В первичной цепи рассматриваются трёхфазный и два двухфазных режима работы. Во вторичной цепи - размыкание нулевого проводника. Записываются показания амперметров и анализируются пути протекания вторичных токов.

3. ПОРЯДОК ИЗУЧЕНИЯ ТРАНСФОРМАТОРА ТОКА


Проверка погрешности трансформатора тока.

Испытания проводятся совместно с пунктом 2.

Снимается зависимость вторичного тока трансформатора тока от первичного тока в диапазоне от 0,1 I1НОМ до I1НОМ. Производится не менее пяти измерений. За точные значения принимаются показания образцового трансформатора тока. Рассчитывается величина токовой погрешности. Строится зависимость токовой погрешности от величины первичного тока, который берётся в относительных единицах.

Снимается зависимость вторичного тока от величины сопротивления вторичной нагрузки и при неизменной величине первичного тока и одновременно фиксируется форма кривой вторичного тока на осциллографе (пункт 2). Строится зависимость токовой погрешности от величины нагрузки. Путём экстраполяции определяется величина сопротивления вторичной обмотки трансформатора тока.

Изменение формы вторичного тока при возрастании нагрузки.

Для каждого из значений нагрузки по пункту 1 по осциллографу фиксируется форма кривой вторичного тока. Определяется величина сопротивления нагрузки, при которой появляется несинусоидальность формы кривой вторичного тока.

Проверка коэффициента трансформации трансформатора тока.

Произвольно выставляется величина тока в первичной цепи. С помощью метода двух вольтметров определяется коэффициент трансформации.

Контроль витковой изоляции трансформатора тока и повреждений в стали магнитопровода.

Снимаются две вольтамперные характеристики с разомкнутыми выводами первичной обмотки и с перемычкой между выводами Л1 и Л2. Строятся две характеристики и рассчитываются отклонения между ними во всех измеренных точках. Определяется возможность выявления виткового замыкания по вольтамперной характеристике.

Проверка полярности обмоток трансформатора тока.

Собирается схема проверки полярности испытуемого трансформатора тока. При кратковременном нажатии кнопки К фиксируется направление отклонения стрелки гальванометра. Определяется правильность маркировки обмоток трансформаторов тока.

Изучение схем соединений трансформаторов тока и контроль вторичных токовых цепей.

По заданию преподавателя собираются несколько схем соединений вторичных обмоток трансформаторов тока (пункт 1.4). Для одной из схем записываются показания амперметров при симметричных и несимметричных режимах первичной и вторичной сети. Определяются пути протекания тока и возможность отказов релейной защиты при резком изменении величины тока.


4. ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ НАПРЯЖЕНИЯ


1 Назначение, принцип действия и погрешности трансформатора напряжения


Трансформаторы напряжения применяются в электроустановках на напряжение выше 1000 В и предназначены:

) для преобразования переменного первичного напряжения в стандартное вторичное напряжение 100, 100/, 100:3 В;

) для защиты персонала и приборов от высокого напряжения первичной цепи.

) для питания оперативных цепей на подстанциях с выпрямленным и переменным оперативным током.

Трансформатор напряжения работает в режиме близком к холостому ходу.

Коэффициент трансформации равен:



где U1НОМ - номинальное первичное напряжение, U2НОМ - номинальное вторичное напряжение. Вторичное напряжение трансформатора, увеличенное в KНОМ раз, отличается от первичного напряжения, как по модулю, так и по фазе вследствие потерь напряжения в трансформаторе.

Обозначения трансформатора напряжения приведены в табл. 4.1.

Погрешность по напряжению - это отношение разности между приведённым вторичным напряжением и первичным к первичному напряжению


Угловая погрешность - это угол? между векторами первичного и вторичного напряжений. Погрешность считается положительной, если вектор вторичного напряжения опережает вектор первичного напряжения.

Для уменьшения погрешности по напряжению применяется витковая коррекция трансформатора напряжения, так как вторичное напряжение несколько меньше из-за потерь в трансформаторе. Отношение числа витков выбирают меньше номинального коэффициента трансформации. Для этого уменьшают число витков первичной обмотки.


Таблица 4.1 Обозначение обмоток трансформаторов напряжения


Погрешности зависят от cos ? и величины нагрузки трансформатора напряжения (рис.4.1). Следовательно, для работы трансформатора напряжения с минимальной погрешностью необходима определённая величина вторичной нагрузки. Рекомендованные характеристики процентного изменения вторичного напряжения трансформатора, соответствующие cos ?= =0,8 вторичной нагрузки, приведены на рис. 4.2 . Верхняя характеристика соответствует приложенному первичному напряжению 0,8 UНОМ; нижняя - напряжению 1,2 UНОМ. Характеристики приведены для трансформатора, имеющего высший класс точности 0,2. Прямоугольник АВСD характеризует предельно допускаемую зону погрешности трансформатора напряжения при изменении вторичной нагрузки от 0,25 до номинального значения. Пределы активно-индуктивной нагрузки для работы трансформатора напряжения в классе точности при cos ? = 0,8 определяется от



где SНОМ -- номинальная мощность трансформатора в данном классе точности, В·А;1НОМ - номинальное первичное напряжение трансформатора, В;1 - значение первичного напряжения, подведённого к трансформатору, которое должно находится в диапазоне 0,8 - 1,2 UНОМ, В.

Величина номинальной мощности SНОМ зависит от класса точности. Например, для класса точности 1 она примерно в четыре раза больше чем для класса точности 0,2 (см. рис. 4.2).

Трансформаторы напряжения имеют 4 класса точности: 0,2; 0,5; 1 и 3.

2 Конструкции трансформаторов напряжения


Классификация трансформаторов напряжения .

Род установки:

а) внутренний, для установки в помещении;

б) наружный, для установки вне помещения,

в) встроенные, для установки внутри КРУЭ.

По числу фаз:

а) однофазный (О);

б) трёхфазный (Т).

По наличию или отсутствию заземления вывода «Х» первичной обмотки:

а) заземляемый (з);

б) незаземляемый.

По принципу действия:

а) электромагнитный;

б) с ёмкостным делитель;

в) оптический.

По числу ступеней трансформации:

а) электромагнитный однокаскадный;

б) электромагнитный каскадный (К).

По наличию компенсационной обмотки или обмотки для контроля изоляции сети:

а) трёх фазный с дополнительными обмотками для контроля изоляции сети (И);

б) трёх фазный с компенсационными обмотками (К).

По виду изоляции:

а) воздушно-бумажная (С);

б) литая (Л);

в) залитая битумным компаундом (К);

г) с фарфоровой покрышкой (Ф);

д) масляная (М);

г) газовая (Г).

По особенностям конструктивного исполнения:

а) защищённое исполнение (З);

б) водозащищённое исполнение (В);

в) герметичное исполнение (Г);

г) с встроенным предохранителем (П);

д) антирезонансная конструкция (А).

Примеры обозначений трансформаторов напряжения.

НТС-6 - трансформатор напряжения, трёхфазный, с сухой изоляцией, номинальное напряжение 6 кВ.

НОМ - трансформатор напряжения, однофазный, маслонаполненный.

ЗНОМ - один из выводов первичной обмотки заземлён, трансформатор напряжения, однофазный, маслонаполненный.

НОЛ- трансформатор напряжения, однофазный, с литой изоляцией.

ЗНОЛ - один из выводов первичной обмотки заземлён, трансформатор напряжения, однофазный, с литой изоляцией.

НАМИ - трансформатор напряжения, антирезонансный, маслонаполненный, для контроля изоляции.

Параметры антирезонансных трансформаторов напряжения НАМИ не позволяют возникнуть резонансным колебаниям в сети. У этих трансформаторов напряжения в 3-4 раза снижена номинальная индукция в магнитопроводе и соответственно увеличено число витков первичной обмотки. Это обеспечило устойчивость трансформатора к повышению фазных напряжений до (3-4)UНОМ, возникающих при феррорезонансе ёмкости сети с индуктивностью трансформаторов. Антирезонансные свойства НАМИ в основном обеспечиваются компенсационной обмоткой, соединённой в треугольник и замкнутой накоротко. При однофазных замыканиях на землю напряжение нулевой последовательности на ёмкостях сети разряжается через компенсационную обмотку .

НДЕ - трансформатор напряжения с ёмкостным делителем напряжения.

Ёмкостный делитель напряжения состоит из конденсаторов С1 и С2. Напряжение на конденсаторе С2 порядка 10-15 кВ (рис. 4.3). Заградитель не пропускает токи высокой частоты каналов связи, телемеханики и релейной защиты во вторичные цепи трансформатора напряжения. Для уменьшения угловой погрешности, вызванной наличием в цепи конденсаторов, применяется индуктивный реактор. Для предупреждения феррорезонанса во вторичной обмотке устанавливается демпфирующее устройство.


НКФ - трансформатор напряжения, каскадный, в фарфоровой покрышке.

Первичная обмотка в целях уменьшения изоляции имеет несколько каскадов (частей) и столько же магнитопроводов (рис. 4.4). Число каскадов определяется классом напряжения трансформатора. Каждый трансформатор каскада имеет изоляцию на 1/N часть напряжения сети, где N - число ступеней. Концы пер-вичных обмоток каждого каскада присоединены к соответствующим магнитопроводам. Для равномерного распределения нагрузки между первичными обмотками служат дополнительные обмотки 2.

измерительный трансформатор ток напряжение


В оптическом трансформаторе напряжения, представленном на рис. 4.5, электроннооптический блок 5 посылает световые сигналы через оптическое волокно 4 в поляризатор 2. Световой сигнал, поднимаясь вверх, проходит через кристаллы (ячейки Поккельса) 3, расположенные в трёх точках внутри высоковольтной изоляции. Когда световой сигнал проходит через кристалл, электрическое поле в поляризаторе 2, расположенном вокруг токоведущего проводника 1, изменяет его круговую поляризацию на эллиптическую. В электроннооптическом блоке измеряется отношение выходных сигналов относительно каждой оси X и Y, т.е. эллиптичность светового сигнала. Этим достигаются точные измерения электрического поля.

3 Схемы соединений трансформаторов напряжения


В сетях с глухо- и эффективнозаземлённой нейтралью применяются однофазные трансформаторы напряжения. Первичные обмотки соединяются в звезду и выполняются на фазное напряжение UФ соответствующей сети. Фазные напряжения основных вторичных обмоток, соединённых в звезду, выполняются на напряжение В (рис.4.6). Фазные напряжения дополнительных вторичных обмоток, соединённых в разомкнутый треугольник, равны 100/3 В. Нейтраль первичной обмотки заземляется для измерения фазного напряжения по отношению к земле. По технике безопасности заземляются обе вторичные обмотки, чтобы при повреждении изоляции высокое напряжение не появилось на вторичных обмотках. Как правило, заземляется конец вторичной обмотки фазы В. В ПУЭ допускается заземлять нейтраль вторичной обмотки, соединённой в звезду.

В сетях с изолированной нейтралью применяются две схемы соединения обмоток. Основной является схема, показанная на рис. 4.6. Она используется для подключения защит, приборов и контроля замыкания на землю. Кроме того, применяется схема соединения обмоток двух однофазных трансформаторов напряжения в открытый треугольник (рис. 4.7.). Она используется для подключения счётчиков. Первичные обмотки выполняются на линейные напряжения UЛ, а вторичные - на напряжения 100 В.

В сети с изолированной нейтралью заземляется нейтраль первичной обмотки у трансформатора напряжения. В виду очень большого сопротивления первичной обмотки трансформатора напряжения режим сети от этого не изменяется. При металлическом замыкании на землю или через переходное сопротивление, например фазы С, не происходит короткого замыкания. Линейные напряжения между фазами не изменяются. Таким образом, при замыкании на землю у потребителей не происходит изменения напряжения.

У трансформатора напряжения (рис.4.6) при замыкании фазы С на землю первичная обмотка фазы С будет замкнута накоротко, так как соединяются точки 1-6-5-4. При этом первичные обмотки фаз В и А подключаются на линейные напряжения соответственно ВС и АС между точками 2-4,5,6 и 3-4,5,6. Следовательно, во вторичной обмотке фазы С фазное напряжение равно нулю, а фазные напряжения В и А равны линейным напряжениям. Линейные напряжения во вторичных цепях не изменяются, так как остаются постоянными первичные линейные напряжения.

В дополнительной вторичной обмотке, соединённой в разомкнутый треугольник, суммируются три фазных напряжения. При отсутствии замыкания на землю сумма трёх симметричных фазных напряжений равна нулю. Если в сети произошло замыкание на землю, то появляются симметричные составляющие напряжения нулевой последовательности и на выводах разомкнутого треугольника появляется напряжение 3UО. При металлическом замыкании на землю напряжение 3UО на разомкнутом треугольнике достигает 100 В. Таким образом, появление напряжения на обмотке, соединённой в разомкнутый треугольник, сигнализирует о замыкании на землю. По вольтметрам, подключённым к фазным напряжениям, определяют повреждённую фазу, а также качественно величину переходного сопротивления в месте повреждения.


5. ИСПЫТАНИЕ ТРАНСФОРМАТОРОВ НАПРЯЖЕНИЯ


1 Изучение режимов работы трансформаторов напряжения


Рассматриваются режимы трансформатора напряжения, подключённого к сети с изолированной нейтралью на напряжение 6-35 кВ. Трансформатор напряжения имеет одну первичную обмотку, соединённую в звезду, и две вторичные обмотки, соединённые в звезду и разомкнутый треугольник. К вторичным обмоткам, соединённым в звезду, подключаются три вольтметра на фазные напряжения. Четвёртый вольтметр через переключатель подключается на линейные напряжения. К обмотке, соединённой в разомкнутый треугольник, подключаются вольтметр VО и табло «Земля».

На стенде с помощью кнопок создают металлическое замыкание и замыкание на землю через переходное сопротивление при замкнутой и разомкнутой нейтрали первичной обмотки трансформатора напряжения.


2 Контроль состояния изоляции трансформатора напряжения


Одним из способов контроля состояния изоляции является определение сопротивление изоляции обмоток трансформатора напряжения по отношении к корпусу и между собой. Для контроля используется мегомметр, который подаёт высокое напряжение на обмотки. При проведении измерений необходимо предотвратить появление высокого напряжения на обмотках трансформатора. Для этого производится закорачивание обмоток трансформатора. Схема проведения испытаний трёх обмоточного трансформатора напряжения приведена на рис. 5.1.

6. ПОРЯДОК ИЗУЧЕНИЯ ТРАНСФОРМАТОРОВ НАПРЯЖЕНИЯ


На стенде (рис. 6.1) измеряются по вольтметрам напряжения на вторичных обмотках трансформатора напряжения. Подключение вольтметра к разным линейным напряжениям производится переключателем П. С помощью ключа К1 замыкается нейтраль первичной обмотки трансформатора напряжения. При замкнутом ключе К2 создаётся металлическое замыкание на землю, а при замыкании ключа К3 - замыкание на землю через переходное сопротивление.

Порядок изучения трансформатора напряжения:

а) нормальный режим работы сети, нейтраль трансформатора напряжения разомкнута (ключи К1 - К3 - отключены);

б) нормальный режим работы сети, нейтраль трансформатора напряжения замкнута на землю (ключ К1 - включён, К2, К3 - отключены);

в) замыкание в сети через переходное сопротивление, нейтраль трансформатора напряжения разомкнута (ключ К3 - включён, К1, К2 - отключены);

г) замыкание в сети через переходное сопротивление, нейтраль трансформатора напряжения замкнута (ключи К1, К3 - включены, К2 - отключён);

д) металлическое замыкание в сети, нейтраль трансформатора напряжения замкнута (ключи К1, К2 - включены, К3 - отключён).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК


1. Электрическая часть станций и подстанций: Учеб. Для вузов/ А. А. Васильев, И. П. Крючков, Е. Ф. Наяшков и др.; Под ред. А. А. Васильева. - 3-изд., перераб. и доп. - М.: Энергоиздат, 1990. - 576 с.

Рожкова, Лиида Дмитриевна. Электрооборудование станций и подстанций: учеб. для техникумов/Л.Д. Рожкова, В.С. Козулин. - М.: Энергоатомиздат, 1987. - 546 с.

ГОСТ 7746-2001. Трансформаторы тока. Общие технические условия - М.: Изд-во Стандартинформ. 2001.

Методы диагностирования измерительных трансформаторов тока: методическое пособие/ В. А. Савельев, А. Г. Соколов; Федеральное агенство по образованию, ГОУВПО «Ивановский государственный энергетический университет имени В.И. Ленина», - Иваново. 2005. - 136 с.

Объём и нормы испытаний электрооборудования. РД 34.45.- 51.300.-.97. М.: ЭНАС, 1998 г. - 255 с.

ГОСТ 1983-2001. Трансформаторы напряжения. Общие технические условия - М.: Изд-во Стандартинформ. 2001.

К. Кадомская, О. Лаптев. Антирезонансные трансформаторы напряжения. Эффективность применения. /Новости электротехники. 2006. - 6(42).


Заказ работы

Наши специалисты помогут написать работу с обязательной проверкой на уникальность в системе «Антиплагиат»
Отправь заявку с требованиями прямо сейчас, чтобы узнать стоимость и возможность написания.

1.doc

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ДАЛЬНЕВОСТЧНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ
Кафедра Электроэнергетики

ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ
Аппараты распределительных устройств высокого напряжения

ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ

Руководство к лабораторной работе № 7

Владивосток 2003

Руководство (переработанное и дополненное) содержит общие теоретические сведения по назначению и конструкциям измерительных трансформаторов: трансформаторов тока и трансформаторов напряжения.

Приведены электрические схемы включения этих аппаратов.

Руководство предназначено для лабораторных работ по дисциплине «Электрические аппараты» для студентов, обучающихся по направлению 650900 «Электроэнергетика» всех форм обучения.

Составлено канд. техн. наук доцентом кафедры Электроэнергетики Холяновой О.М.
Владивосток, ДВГТУ, 2003

^ АППАРАТЫ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ ВЫСОКОГО НАПРЯЖЕНИЯ

Цель лабораторной работы: изучение конструкций трансформаторов тока и трансформаторов напряжения на разные классы напряжения, их назначение и использование в схемах электроснабжения.

^ При защите необходимо:

1. Объяснить назначение и конструкцию трансформатора тока и трансформатора напряжения (с использованием теории электрических аппаратов) на примере имеющихся аппаратов в лаборатории.

2. Назвать и расшифровать тип аппаратов.

3. Показать электрическую схему включения трансформаторов тока и трансформаторов напряжения.

4. Ответить на контрольные вопросы.

^ 1. ТРАНСФОРМАТОРЫ ТОКА

1.1. Общие сведения

Измерительные трансформаторы тока (ТТ) представляют собой аппараты для преобразования токов первичных цепей в стандартные токи

(5 или 1 А) для измерительных приборов, устройств релейной защиты и автоматики. Нормально трансформаторы тока работают в режиме, близком к режиму короткого замыкания вторичной обмотки. Размыкание вторичной обмотки при наличии тока в первичной цепи недопустимо, так как при этом может быть повреждена изоляция трансформатора с вытекающими отсюда последствиями.

Трансформаторы тока выполняются для внутренней и наружной установки на всю шкалу токов и напряжений. Трансформаторы тока обладают погрешностями по току и по углу.

Для уменьшения погрешности по току осуществляют подгонку числа витков вторичной обмотки (несколько уменьшая их). Угловая погрешность зависит от коэффициента мощности нагрузки вторичной обмотки. Подгонка витков не влияет на величину угловой погрешности,

Величина погрешностей по току в процентах при первичном токе, равном 100-120 % iihom, определяет класс точности работы трансформаторов тока.

В зависимости от погрешности по ГОСТ 7746-78 различают классы точности 0,2; 0,5; 1; 3; 5; 10. Класс точности выбирается в соответствии с его назначением. Более точные ТТ (класс 0,2; 0,5; 1) используются для измерений, более грубые - для релейной защиты.

В зависимости от нагрузки вторичной обмотки один и тот же трансформатор тока может работать в различных классах точности. С увеличением нагрузки сверх номинальной в данном классе точности трансформатор переходит работать в худший класс точности. Сопротивление вторичной нагрузки зависит как от параметров подключенных элементов (реле, измерительных приборов), так и от схемы соединения трансформаторов тока с этими элементами.

В электроустановках используют одновитковые (стержневые, шинные, встроенные), многовитковые (катушечные, звеньевые) и каскадные трансформаторы тока.

Выбор того или иного типа трансформатора тока зависит от напряжения сети, значения длительного максимального тока цепи, значения и хдрактера нагрузки вторичных цепей, а также от тока КЗ и длительности его протекания в цепи.

Каждый трансформатор тока состоит из следующих частей: первичной обмотки, сердечника, вторичной обмотки и изоляции.

На рис. 1.1 показаны принципиальные схемы устройства трансформаторов тока.

Рис. 1.1. Принципиальные схемы устройства трансформаторов тока: а - одновитковый; б - многовитковый с одним сердечником; в – многовитковый с двумя сердечниками; 1 - первичная обмотка; 2 - изоляция; 3 - сердечник; 4 - вторичная обмотка.
Первичная обмотка 1 включается последовательно в измеряемую цепь. Ток этой обмотки и является измеряемым током. Вторичная обмотка 2 должна обязательно быть замкнута на нагрузку (на измерительный прибор, цепь защиты и т.д.) не превосходящую определенного значения. Разомкнутое состояние вторичной обмотки является аварийным режимом.

Если разомкнуть вторичную обмотку, магнитный поток в сердечнике резко возрастает, так как его величина будет теперь определяться намагничивающей силой первичной обмотки. В этом режиме сердечник может нагреться до недопустимой температуры, а на вторичной разомкнутой обмотке появится высокое напряжение, достигающее в некоторых случаях десятков киловольт.

1.2. Конструкции одновитковых трансформаторов тока

Отличительной особенностью одновитковых трансформаторов тока является использование в качестве первичной обмотки одного прямолинейного проводника.

^ Стержневой трансформатор - с первичной обмоткой в виде стержня круглого сечения.

Шинный трансформатор - поставляется заводом без первичной обмотки (при монтаже через окно проходного изолятора пропускается шина распределительного устройства, которая в дальнейшем играет роль первичной обмотки).

^ Встроенный трансформатор - представляет собой кольцевой сердечник с намотанной на него вторичной обмоткой, который одевается на проходной изолятор масляного выключателя или силового трансформатора, причем первичной обмоткой служит стержень изолятора.

Выполнение первичной обмотки в виде одного прямолинейного проводника упрощает конструкцию трансформатора, снижает ее размеры и вес. Вместе с тем одновитковые трансформаторы тока целесообразно применять только при относительно больших номинальных первичных токах (обычно от 600 А и выше), так как при малых токах они не обеспечивают необходимой точности измерения.

Для трансформаторов тока внутренней установки до 35 кВ и наружной установки до 10 кВ применяется литая изоляция на основе эпоксидных смол.

^ Стержневые трансформаторы тока с литой изоляцией типа ТПОЛ (Т - трансформатор тока, П - проходной, О - одновитковый, Л - с литой изоляцией). Предназначены для внутренней установки и изготавливаются на напряжения от 10 до 35 кВ на токи от 600 до 1500 А. На рис. 1.2 показана конструкция проходного одновиткового ТТ с литой изоляцией из эпоксидной смолы типа ТПОЛ-10 на 10 кВ 1000 А с двумя сердечниками.


Рис. 1.2. Проходной одновитковый трансформатор тока ТПОЛ-10:

А - расположение сердечников с обмотками; б -конструкция: 1 - сердечник; 2 - вторичная обмотка; 3 - крепежное кольцо; 4 - стержень первичной обмотки

Первичная обмотка выполнена в виде круглого медного стержня, концы которого имеют прямоугольную форму. Стержень первичной обмотки пронизывает два тороидальных сердечника, представляющих собой свернутые спиралью ленты трансформаторной стали. На каждый сердечник поверх картона намотана вторичная обмотка, выполненная изолированным проводом. Между сердечниками установлено фигурное полукольцо, на котором укреплен прямоугольный опорный фланец.

Сердечники с первичной обмоткой залиты компаундом, образуя изоляционный блок в виде проходного изолятора. Выводы вторичной обмотки расположены на боковом приливе блока.

^ Шинные трансформаторы тока (проходные и опорные) строят на большие номинальные первичные токи. Роль первичной обмотки выполняет шина, пропускаемая внутри трансформатора.

На напряжение 0,66 кВ и токи от 800 до 10000 А есть трансформаторы типа ТНШЛ-0,66 (Н - низкого напряжения, Щ - шинный, Л - с литой изоляцией), см. рис. 1.3.

-330 (210)

Рис. 1.3. трансформатор тока ТНШЛ-0,66 на 3000-5000 А

Встроенные трансформаторы тока типа ТВ и ТВТ (Т- трансформатор тока, В - встроенный, Т - встроенный в силовой трансформатор) составляют часть конструкции выключателей с большим объемом масла на напряжение 35 кВ и выше и силовых трансформаторов.

Встроенный трансформатор тока представляет собой стержневой трансформатор тока, использующий в качестве основной изоляции изоляцию масляного выключателя или силового трансформатора. Поэтому встроенные трансформаторы весьма дешевы и не требуют особого места для установки.

Основным недостатком встроенного трансформатора тока является низкая точность измерения - порядка 10 (особенно при небольших номинальных токах). Это объясняется тем, что кольцевой сердечник встроенного трансформатора тока выполняется с большим внутренним диаметром, определяемым размерами изолятора выключателя.

1.3. Многовитковые трансформаторы тока

При малых первичных токах (ниже 400 А) для получения высокого класса точности применяются многовитковые ТТ. Чем меньше номинальный ток, тем, очевидно, большее число витков должна иметь первичная обмотка.

Конструктивно многовитковые трансформаторы тока сложнее одновитковых. Наличие нескольких витков в первичной обмотке усложняет конструкцию и затрудняет обеспечение необходимой устойчивости аппарата по отношению к электродинамическим силам при коротких замыканиях.

По форме первичной обмотки и её расположению относительно сердечника многовитковые ТТ подразделяют на катушечные и звеньевые, по способу крепления - на опорные и проходные, по виду изоляции - с литой изоляцией и маслонаполненные.

На рис. 1.4 показан многовитковый трансформатор тока ТПЛ-10 -

Трансформатора тока, П - проходной, Л - с литой изоляцией, на напряжение 10 кВ). На прямоугольном шихтованном магнитопроводе 1 расположена вторичная обмотка 2. Первичная обмотка 3 выполняется из медной шины. Первичная обмотка выведена на контакты 5, вторичная - на контакты 6. Все детали ТТ залиты эпоксидным компаундом 4.


Рис. 1.4. Трансформатор тока ТПЛ-10 с двумя сердечниками

При напряжении 35 кВ и выше для открытых установок применяются ТТ с масляной изоляцией. Наиболее распространены ТТ звеньевого типа, рис. 1.5. Три тороидальных магнитопровода 1 со вторичными обмотками 2 охвачены первичной обмоткой 4, выполняемой мягким многожильным проводом.

Первичная обмотка обычно имеет несколько параллельных ветвей (на рис. 1.5 две ветви). При переходе с параллельного соединения на последовательное первичный номинальный ток трансформатора уменьшается в 2 раза.






Рис. 1.5 ТТ звеньевого типа

Рис. 1.6. ТТтипаТФН-35

Первичная и вторичная обмотки изолируются кабельной бумагой 5 . После наложения изоляции магнитопровод с обмотками крепится к основанию ТТ с помощью лап 3. К этому же основанию крепится фарфоровый кожух, который защищает обмотки от воздействий окружающей среды. Внутренняя полость ТТ после вакуумной сушки заполняется трансформаторным маслом. Масло пропитывает кабельную бумагу и заполняет все пустоты. Такие ТТ выполняются на напряжение до 220 кВ. Общий вид маслонаполненного ТТ опорного исполнения, с обмотками звеньевого типа ТФН-35 (Т трансформатор тока, Ф - в фарфоровом корпусе, Н - для наружной установки, на напряжение 35 кВ) представлен на рис. 1.6. Здесь 1 - вывод ветвей первичной обмотки; 2 - вывод первичной обмотки; 3 - магнитопровод; 4 - вторичная обмотка; 5 - изоляция из кабельной бумаги; 6 - фарфоровая покрышка; 7 -трансформаторное масло.

АО «Электроаппарат», г. С.-Петербург, выпускают новое поколение измерительных трансформаторов тока - ТГФ (Г - с элегазовой изоляцией) на напряжения ПО и 220 кВ, рис. 1.7 и 1.8.

Трансформатор тока ТГФ - наружной установки, с элегазовой изоляцией, в фарфоровой покрышке, пожаробезопасен, герметичен, не требует постоянного обслуживания в течение всего срока службы и предназначен для использования вместо трансформаторов тока с бумажно-масляной изоляцией. В настоящее время разработана покрышка из полимерных материалов.

Номинальный первичный ток при напряжении 110 кВ - от 100 до 2000 А; 220 кВ-от 600 до 3000 А.


Недостатком каскадного ТТ является увеличение погрешности из-за увеличения сопротивления обмоток.
^ 2. ТРАНСФОРМАТОРЫ НАПРЯЖЕНИЯ

2.1.Общие сведения

Трансформаторы напряжения предназначены для понижения высокого

I-i напряжения (свыше 250 В) до значения, равного 100 В или 100/√3 В, необходимого для питания измерительных приборов, цепей автоматики, сигнализации и защитных устройств. Нормально трансформаторы напряжения работают в режиме, близком к режиму холостого хода вторичной обмотки.

Трансформатор напряжения при напряжении до 35 кВ по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из магнитопровода, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. На рис. 2.1. показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение U b a напряжение вторичной обмотки U 2 подведено к измерительному прибору.

Рис. 2.1 Схема включения однофазного трансформатора напряжения

Трансформаторы применяются в наружных (типа НОМ-35, серий ЗНОМ и НКФ) или внутренних установках переменного тока напряжением 0,38-500 кВ и номинальной частотой 50 Гц.

Трехобмоточные трансформаторы НТМИ предназначены для сетей с изолированной нейтралью, серии НКФ (кроме НКФ-110-5 8) - с заземленной нейтралью.

Класс точности трансформаторов напряжения (ТН) характеризуется максимально допустимыми погрешностью напряжения и угловой погрешностью при определенном режиме работы трансформатора.

Погрешность

Класс точности Напряжения, ± % Угловая, ± %

3 3 не нормируется

Трансформаторы напряжения сохраняют класс точности при изменении первичного напряжения от 80 до 120% номинального.

В электроустановках используются однофазные, трехфазные (пятистержневые) и каскадные ТН. Выбор того или иного типа ТН зависит от напряжения сети, значения и характера нагрузки вторичных цепей и назначения ТН (для целей изменения, для контроля однофазных замыканий на землю, для питания устройств релейной защиты и автоматики).

Ввиду относительно высокой стоимости ТН для сетей 110-750 кВ они в ряде случаев, там, где это возможно по условиям работы систем измерения, защиты и автоматики электроустановок, заменяются емкостными делителями напряжения.

По изоляции различают ТН с сухой и масляной изоляцией.
2.2. Однофазные трансформаторы напряжения

Однофазные трансформаторы напряжения получили наибольшее распространение. Они выпускаются на рабочие напряжения от 380 В до 500 кВ.

Конструктивные размеры и масса ТН определяются не мощностью, как у силовых трансформаторов, а в основном объемом изоляции первичной обмотки и размерами её выводов высокого напряжения.

Трансформаторы напряжения с номинальным напряжением от 380 В до 6 кВ имеют исполнение с сухой изоляцией (обмотки выполняются проводом марки ПЭЛ и пропитываются асфальтовым лаком).

Свердловский завод трансформаторов тока выпускает трансформаторы напряжения на 6, 10, 35 кВ с литой изоляцией.

У трансформаторов напряжением 10 - 500 кВ изоляция масляная (магнитопровод погружен в трансформаторное масло).

2.2.1. Сухие трансформаторы напряжения

Для магнитопроводов трансформаторов типа НОС-0,5 применены цельноштампованные Ш-образные пластины, магнитопроводы остальных типов шихтуются из прямоугольных пластин.

Трансформатор напряжения типа ^ НОСК - 6 (О - однофазный, С - с сухой изоляцией, К - с компенсирующей обмоткой для уменьшения угловой погрешности, на напряжение 6 кВ) предназначен для комплектования только распределительных устройств в угольных шахтах, рис. 2.2. При установке он заливается битумной массой. Концы обмоток этого трансформатора выведены свободными гибкими изолированными проводами.


Рис. 2.2. Трансформатор напряжения НОСК-6 2.2.2. Трансформаторы напряжения с литой изоляцией

Заземляемые трансформаторы напряжения ЗНОЛ-35Б УХЛ (О -однофазные, Л - с литой изоляцией, на напряжение 35 кВ, изоляция типа Б, УХЛ - для умеренного и холодного климата) предназначены для питания электрических измерительных приборов, цепей защиты и сигнализации в электроустановках переменного тока частоты 50 или 60 Гц, рис. 2.3.


Рис. 2.3. Общий вид трансформатора ЗНОЛ-35Б

Номинальное напряжение основной вторичной обмотки 100Л/3 В, номинальное напряжение дополнительной вторичной обмотки 100 В.

Номинальная мощность основной и дополнительной обмотки в классе точности 0,5 - 150 В*А; 1 - 300 В*А; 3 - 600 В*А.

Температура воздуха при эксплуатации - от - 60 С до 40 С с относительной влажностью воздуха 100% при 25 С.

Осуществлена патентная защита патентами на изобретения, промышленный образец и свидетельствами на полезную модель.


Рис. 2.4. Общий вид группы ЗхЗНОЛ-6 и ЗхЗНОЛ-10


Трехфазная антирезонансная группа трансформаторов напряжения ЗхЗНОЛ-6 предназначена для установки в комплектные распределительные устройства (КРУ) или закрытые распределительные устройства (ЗРУ) и служит для питания электрических измерительных приборов, цепей защиты и сигнализации в электроустановках переменного тока частотой 50 или 60 Гц рис. 2.4 и 2.5.


Рис. 2.5. Схема группы

Трехфазная группа устойчива к феррорезонансу и (или) воздействию перемежающейся дуги в случае замыкания одной из фаз сети на землю. Предназначена для эксплуатации при условиях:


  • высота установки над уровнем моря не более 1000 м;

  • температура окружающего воздуха от -45 до 50 С;

  • окружающая среда невзрывоопасная, не содержащая агрессивных газов
    и паров в концентрациях, разрушающих металлы и изоляцию;

  • отсутствие непосредственного воздействия солнечной радиации;

  • рабочее положение в пространстве - любое.
2.2.3. Трансформаторы напряжения с масляной изоляцией

Магнитопроводы этих трансформаторов шихтованные, собраны из пластин электротехнической стали. Пластины изолированы лаковой пленкой.

Обмотки ВН состоят из одной или двух катушек (секций) и имеют электростатические экраны для защиты от перенапряжений.

Баки трансформаторов напряжения сварены из листовой стали. Форма бака - круглая, овальная или прямоугольная.

Выводные концы обмоток большинства трансформаторов присоединены к проходным фарфоровым изоляторам (вводам), установленным на крышке бака.

Трансформаторы напряжения типов ЗНОМ-3 5 и НОМ-3 5 имеют маслорасширители, установленные на вводах ВН, рис. 2.6. У ТН остальных типов маслорасширители отсутствуют, уровень масла у них находится ниже крышки на 20-30 мм.


Рис. 2.6. Трансформатор напряжения типа НОМ-35: 1 - выводы высшего напряжения, 2 - выводы низшего напряжения, 3 -расширитель, 4 - бак, 5 - маслоспусковой кран

2.3. Трехфазные трансформаторы напряжения

Габариты и стоимость ТН могут быть уменьшены путем объединения трёх однофазных ТН в - один трехфазный. Применяются трехстержневые и пятистержневые ТН.

Для контроля сопротивления изоляции систем с изолированной нейтралью применяются трехфазные пятистержневые ТН, рис. 2.7. При заземлении одной из фаз магнитные потоки, созданные обмотками неповрежденных фаз, замыкаются по крайним стержням, имеющим малое магнитное сопротивление. Дополнительные обмотки, соединенные в открытый треугольник а,х ь обеспечивают работу сигнализации и релейной защиты. При симметричном режиме в сети на выходе а,х, напряжение отсутствует.


2.7. ТН с пятистержневым магнитопроводом

НАМИТ - 10 -2 УХЛ - трансформатор (Н - напряжения, А -антирезонансный, И - для измерения напряжения и контроля изоляции в сетях 6 и 10 кВ с любым режимом заземления нейтрали, в котором используется схема защиты от феррорезонанса, Т - трехфазный, на напряжение 10 кВ).

Номинальное напряжение основной вторичной обмотки 100 В, дополнительной вторичной обмотки при однофазном замыкании сети на землю

Номинальная мощность основной вторичной обмотки при классе точности

0,5 - 200 В*А; 1 - 300 В*А; 3 - 600 В*А.

На рис. 2.8. приведена схема соединений трансформатора НАМИТ-10.


Рис. 2.8. Схема соединений трансформатора НАМИТ-10-2

Трансформатор состоит из двух трансформаторов напряжения, установленных в одном корпусе:

ТНКИ - трансформатор напряжения контроля изоляции. Предназначен для питания цепей измерительных приборов, учета электрической энергии, защиты и контроля изоляции.

ТИП - трансформатор нулевой последовательности. Предназначен для защиты трансформатора ТНКИ от повреждения при однофазных замыканиях.

Автоматическое изменение индуктивного сопротивления трансформатора ТНП исключает феррорезонансные процессы в любых режимах работы электрической сети с изолированной нейтралью. Благодаря этому НАМИТ-10-2 выгодно отличается от аналогичных трансформаторов (НТМИ-10, НАМИ-10,

ЗхЗНОЛ-6).

Работа трансформатора НАМИТ-10 при любых режимах работы электрической сети не имеет ограничений во времени. При включении трансформатора в сети, где суммарная длина воздушных линий не более 60 км, а кабельных не более 3 км, т.е. в условиях возможности возникновения

феррорезонанса, следует использовать схему оперативных цепей защиты, прилагаемую к паспорту ТН.

Трансформаторы НАМИТ-10 выпускает АО «Самарский трансформатор», г. Самара.

2.4. Каскадные трансформаторы напряжения

При напряжениях выше 35 кВ ввиду резкого возрастания габаритов и стоимости масляные каскадные ТН нормальной конструкции состоят из одного (НКФ-110), двух (НКФ-220), трех (НКФ-330) или четырёх (НКФ-400 и НКФ-500) блоков.





Рис. 2.9. Каскадные трансформаторы напряжения



В двухкаскадном ТН на напряжение 110 кВ каждый каскад имеет свой магнитопровод (1 и П), рис. 2.9.а). Обмотки высокого напряжения каждого каскада рассчитаны на 50% фазного напряжения. Один из выводов каждой обмотки ВН соединен с магнитопроводом. На стороне низкого напряжения выходные обмотки ах, а д х д предназначены для питания измерительных приборов и реле в схеме защиты. Обмотка связи w c bi расположена на магнитопроводе 1, а обмотка связи wcbz - на магнитопроводе П.

При отсутствии обмоток связи, если нагрузка не подключена к выходным обмоткам, напряжение разделится между обмотками ВН, так как их индуктивные сопротивления холостого хода одинаковы.

При включении нагрузки вторичный ток размагничивает магнитопровод 1 и поток в нем уменьшается. Реактивное сопротивление ступени 1 также уменьшается. Это ведет к тому, что напряжение между ступенями поделится неравномерно, причем большая часть ляжет на ступень П.

Обмотки связи служат для выравнивания распределения напряжения между обмотками при включении нагрузки.

Более совершенным является вариант б) на рис. 2.9. При этом же напряжении 11ОЛ/3 кВ ТН имеет один магнитопровод. На верхнем горизонтальном стержне магнитопровода расположены обмотки связи w c bi и первая обмотка высокого напряжения ВН Ь на нижнем - обмотка связи w C B2, вторая обмотка высокого напряжения ВН 2 и две обмотки низкого напряжения НН. Один из концов каждой обмотки ВН Ь ВН 2 соединяется с магнитопроводом. Каждая обмотка ВН имеет изоляцию относительно магнитопровода, рассчитанную на напряжение /2 и ф, что уменьшает размеры трансформатора.

В трансформаторах на напряжение 110 кВ и выше для снижения атмосферных перенапряжений необходимо равномерное распределение напряжения по катушкам обмотки ВН. С этой целью поверх обмоток ВН располагаются экраны, которые электрически соединяются с последними витками этих обмоток. Магнитопровод с обмотками крепится на изоляционных стойках, устанавливается в фарфоровый корпус и заливается маслом.

Результирующее активное и реактивное сопротивление обмоток каскадных ТН значительно больше, чем у ТН нормального исполнения. Поэтому для получения высокого класса точности приходится снижать нагрузку.

На рис. 2.10 представлен трансформатор напряжения НКФ-110.

Рис. 2.10. Общий вид трансформатора напряжения НКФ-110: а - устройство, б - схема; 1 - зажим для присоединения к сети высшего напряжения, 2 - фарфоровый корпус, 3 - зажимы обмотки низшего напряжения, 4 - транспортные катки

^ КОНТРОЛЬНЫЕ ВОПРОСЫ


  1. Назначение измерительных трансформаторов.

  2. Обозначение класса точности. Какие классы точности установлены для измерительных трансформаторов тока и напряжения. Каково назначение измерительных трансформаторов различных классов точности.
3. В чем заключются особенности режима работы трансформатора тока.

4. Каковы значения номинальных вторичных токов трансформаторов тока и из каких соображений они установлены.

5. Чем опасен разрыв вторичной обмотки трансформатора тока.

6. В чем состоят особенности режима работы трансформатора напряжения.

7. Чему равны номинальные вторичные напряжения ТН и из каких соображений они установлены.

8. От чего зависят погрешности измерения ТН.

9. В чем состоят отличия конструкций ТН от конструкций силовых трансформаторов. Как влияет величина номинального первичного напряжения на конструктивное исполнение ТН.

10.Назовите ТТ и ТН нового поколения и перечислите их достоинства. 11 .Покажите схему включения ТТ и ТН в электрическую сеть.
ЛИТЕРАТУРА

1. Чунихин А.А. Электрические аппараты: Общий курс. Учебник для вузов,- 3-е изд., перераб. и доп. - М.: Энергоатомиздат, 1988. - 720 с.
2. Электротехнический справочник. Том 1, книга 2. 4 изд., перераб./ Под общей ред. профессоров П.Г.Грудинского, Г.Н. Петрова, М.М. Соколова и др. - М.: Энергия, 1971.-880 с.



Случайные статьи

Вверх