Температура грунта на заданной глубине. Отопление из центра земли

Температура внутри земли чаще всего является довольно субъективным показателем, поскольку точную температуру можно назвать только в доступных местах, например, в Кольской скважине (глубина 12 км). Но это место относится к наружной части земной коры.

Температуры разных глубин Земли

Как выяснили ученые, температура поднимается на 3 градуса каждые 100 метров вглубь Земли. Эта цифра является постоянной для всех континентов и частей земного шара. Такой рост температуры происходит в верхней части земной коры, примерно первые 20 километров, далее температурный рост замедляется.

Самый большой рост зафиксирован в США, где температура поднялась на 150 градусов за 1000 метров вглубь земли. Самый медленный рост зафиксирован в Южной Африке, столбик термометра поднялся всего лишь на 6 градусов по Цельсию.

На глубине около 35-40 километров температура колеблется в районе 1400 градусов. Граница мантии и внешнего ядра на глубине от 25 до 3000 км раскаляется от 2000 до 3000 градусов. Внутренние ядро нагрето до 4000 градусов. Температура же в самом центре Земли, по последним сведениям, полученным в результате сложных опытов, составляет около 6000 градусов. Такой же температурой может похвастаться и Солнце на своей поверхности.

Минимальные и максимальные температуры глубин Земли

При расчете минимальной и максимальной температуры внутри Земли в расчет не берут данные пояса постоянной температуры. В этом поясе температура является постоянной на протяжении всего года. Пояс располагается на глубине от 5 метров (тропики) и до 30 метров (высокие широты).

Максимальная температура была измерена и зафиксирована на глубине около 6000 метров и составила 274 градуса по Цельсию. Минимальная же температура внутри земли фиксируется в основном в северных районах нашей планеты, где даже на глубине более 100 метров термометр показывает минусовую температуру.

Откуда исходит тепло и как оно распределяется в недрах планеты

Тепло внутри земли исходит от нескольких источников:

1) Распад радиоактивных элементов ;

2) Разогретая в ядре Земли гравитационная дифференциация вещества ;

3) Приливное трение (воздействие Луны на Землю, сопровождающееся замедлением последней) .

Это некоторые варианты возникновения тепла в недрах земли, но вопрос о полном списке и корректности уже имеющегося открыт до сих пор.

Тепловой поток, исходящий из недр нашей планеты, изменяется в зависимости от структурных зон. Поэтому распределение тепла в месте, где находится океан, горы или равнины, имеет совершенно разные показатели.

Ну кому же не хочется бесплатно отапливать свой дом, особенно во время кризиса, когда каждая копейка на счету.

Мы уже затрагивали тему, как , наступила очередь противоречивой технологии отопления дома энергией земли (Геотермальное отопление).

На глубине около 15 метров, температура земли составляет примерно 10 градусов по Цельсию. Через каждые 33 метра, температура повышается на один градус. В итоге, для того, чтобы бесплатно отапливать дом, порядка 100 м2, достаточно пробурить скважину около 600 метров и получать тепло 22 градуса на протяжении всей жизни!

Теоретически, система бесплатного отопления от энергии земли достаточно проста. В скважину закачивается холодная вода, которая нагревается до 22 градусов и по законам физики с небольшой помощью насоса (400-600 вт) поднимается по утепленным трубам в дом.

Недостатки использования энергии земли для отопления частного дома:

— Давайте более подробно разберем финансовые затраты на создание такой системы отопления. Средняя стоимость 1 м бурения скважины составляет порядка 3000 рублей. Итого глубина в 600 метров обойдется в 1 800 000 рублей. И это только бурение! Без установки оборудования для закачки и подъема теплоносителя.

— В разных регионах России свои особенности грунтов. В некоторых местах пробурить скважину в 50 метров задача не из легких. Требуются усиленные обсадные трубы, укрепление шахты и т.д.

— Утепление ствола шахты на такую глубину практически невозможно. Следует, что вода не будет подниматься с температурой 22 градуса.

— Для того, чтобы пробурить скважину в 600 метров требуется разрешение;

— Допустим, вода разогретая до 22 градусов попадает в дом. Вопрос, как «снять» полностью с носителя всю энергию земли? Максимум, при прохождении по трубам в теплом доме опуститься до 15 градусов. Таким образом нужен мощный насос, который будет в десятки раз больше прогонять воды с 600 метровой глубины для получения хоть какого-то эффекта. Здесь закладываем не сопоставимый с экономией расход электроэнергии.

На глубине около 15 метров, температура земли составляет примерно 10 градусов по Цельсию

Следует логичный вывод, что уже далеко не бесплатным отопление дома энергией земли может позволить только человек далеко не бедный, которому экономия на отоплении особо и не нужна. Конечно, можно сказать, что такая технология будет служить сотни лет и детям и внукам, но все это фантазии.

Идеалист скажет, что дом строит на века, а реалист всегда будет рассчитывать на инвестиционную составляющую — строю для себя, но в любой момент продам. Не факт, что детки будут привязаны к этому дому и не захотят его продать.

Энергия земли для отопления дома эффективна в следующих регионах:

На Кавказе есть действующие примеры работающих скважин с минеральной водой выходящей наружу самоизливом, с температурой 45 градусов с учетом глубинной температуры около 90 градусов.

На Камчатке использование геотермальных источников с температурой на выходе около 100 градусов — самый оптимальный вариант использования энергии земли для отопления дома.

Технологии развиваются бешеными темпами. КПД классических систем отопления растет на глазах. Несомненно и отопление дома энергией земли станет менее дорогой.

Видео: Геотермальное отопление. Энергия земли.

Один из самых лучших, рациональных приемов в возведении капитальных теплиц - подземная теплица-термос.
Использование этого факта постоянства температуры земли на глубине, в устройстве теплицы дает колоссальную экономию расходов на обогрев в холодное время года, облегчает уход, делает микроклимат более стабильным .
Такая теплица работает в самые трескучие морозы, позволяет производить овощи, выращивать цветы круглый год.
Правильно оборудованная заглубленная теплица дает возможность выращивать, в том числе, теплолюбивые южные культуры. Ограничений практически нет. В теплице могут прекрасно чувствовать себя цитрусовые и даже ананасы.
Но чтобы на практике все исправно функционировало, обязательно нужно соблюсти проверенные временем технологии, по которым строились подземные теплицы. Ведь эта идея не нова, еще при царе в России заглубленные теплицы давали урожаи ананасов, которые предприимчивые купцы вывозили на продажу в Европу.
Почему-то строительство подобных теплиц не нашло в нашей стране большого распространения, по большому счету, она просто забыта, хотя конструкция идеально подходит как раз для нашего климата.
Вероятно, роль здесь сыграла необходимость рытья глубокого котлована, заливка фундамента. Строительство заглубляемой теплицы достаточно затратное, это далеко не парник, накрытый полиэтиленом, но и отдача от теплицы гораздо больше.
От заглубления в землю не теряется общая внутренняя освещенность, это может показаться странным, но в некоторых случаях светонасыщенность даже выше, чем у классических теплиц.
Нельзя не упомянуть о прочности и надежности конструкции, она несравнимо крепче обычной, легче переносит ураганные порывы ветра, хорошо противостоит граду, не станут помехой и завалы снега.

1. Котлован

Создание теплицы начинается с рытья котлована. Чтобы использовать тепло земли для обогрева внутреннего объема, теплица должна быть достаточно углублена. Чем глубже, тем земля становится теплее.
Температура почти не изменяется в течение года на расстоянии 2-2,5 метра от поверхности. На глубине 1 м температура грунта колеблется больше, но и зимой ее значение остается положительным, обычно в средней полосе температура составляет 4-10 С, в зависимости от времени года.
Заглубленная теплица возводится за один сезон. То есть зимой она уже вполне сможет функционировать и приносить доход. Строительство не из дешевых, но, применив смекалку, компромиссные материалы, возможно сэкономить буквально на целый порядок, сделав своеобразный эконом-вариант теплицы, начиная с котлована.
Например, обойтись без привлечения строительной техники. Хотя самую трудоемкую часть работы - рытье котлована -, конечно, лучше отдать экскаватору. Вручную вынуть такой объем земли тяжело и долго.
Глубина ямы котлована должна быть не меньше двух метров. На такой глубине земля начнет делиться своим теплом и работать как своеобразный термос. Если глубина будет меньше, то принципиально идея будет работать, но заметно менее эффективно. Поэтому рекомендуется не жалеть сил и средств на углубление будущей теплицы.
В длину подземные теплицы могут быть любыми, но ширину лучше выдержать в пределах 5 метров, если ширина больше, то ухудшаются качественные характеристики по обогреву и светоотражению.
По сторонам горизонта подземные оранжереи ориентировать нужно, как обычные теплицы и парники, с востока на запад, то есть так, чтобы одна из боковых сторон была обращена на юг. В таком положении растения получат максимальное количество солнечной энергии.

2. Стены и крыша

По периметру котлована заливают фундамент или выкладывают блоки. Фундамент служит основанием для стен и каркаса сооружения. Стены лучше делать из материалов с хорошими теплоизоляционными характеристиками, прекрасный вариант - термоблоки.

Каркас крыши чаще делают деревянным, из пропитанных антисептическими средствами брусков. Конструкция крыши обычно прямая двускатная. По центру конструкции закрепляют коньковый брус, для этого на полу устанавливают центральные опоры по всей длине теплицы.

Коньковый брус и стены соединяются рядом стропил. Каркас можно сделать и без высоких опор. Их заменяют на небольшие, которые ставят на поперечные балки, соединяющие противоположные стороны теплицы, - такая конструкция делает внутреннее пространство свободнее.

В качестве покрытия крыши лучше взять сотовый поликарбонат - популярный современный материал. Расстояние между стропилами при строительстве подгоняют под ширину поликарбонатных листов. Работать с материалом удобно. Покрытие получается с небольшим количеством стыков, так как листы выпускаются длиной 12 м.

К каркасу они крепятся саморезами, их лучше выбирать со шляпкой в виде шайбы. Во избежание растрескивания листа, под каждый саморез нужно просверлить дрелью отверстие соответствующего диаметра. С помощью шуруповерта, или обычной дрели с крестовой битой, работа по остеклению движется очень быстро. Для того чтобы не оставалось щелей, хорошо заранее по верху проложить стропила уплотнителем из мягкой резины или другого подходящего материала и только потом прикручивать листы. Пик крыши вдоль конька нужно проложить мягким утеплителем и прижать каким-то уголком: пластиковым, из жести, из другого подходящего материала.

Для хорошей теплоизоляции крышу иногда делают с двойным слоем поликарбоната. Хотя прозрачность уменьшается примерно на 10%, но это покрывается отличными теплоизоляционными характеристиками. Нужно учесть, что снег на такой крыше не тает. Поэтому скат должен находиться под достаточным углом, не менее 30 градусов, чтобы снег на крыше не накапливался. Дополнительно для встряхивания устанавливают электрический вибратор, он убережет крышу в случае, если снег все-таки будет накапливаться.

Двойное остекление делают двумя способами:

Между двумя листами вставляют специальный профиль, листы крепятся к каркасу сверху;

Сначала крепят нижний слой остекления к каркасу изнутри, к нижней стороне стропил. Вторым слоем крышу накрывают, как обычно, сверху.

После завершения работы желательно проклеить все стыки скотчем. Готовая крыша выглядит весьма эффектно: без лишних стыков, гладкая, без выдающихся частей.

3. Утепление и обогрев

Утепление стен проводят следующим образом. Предварительно нужно тщательно промазать раствором все стыки и швы стены, здесь можно применить и монтажную пену. Внутреннюю сторону стен накрывают пленкой термоизоляции.

В холодных частях страны хорошо использовать фольгированную толстую пленку, покрывая стену двойным слоем.

Температура в глубине почвы теплицы выше нуля, но холоднее температуры воздуха, необходимой для роста растений. Верхний слой прогревается солнечными лучами и воздухом теплицы, но все-таки почва отбирает тепло, поэтому часто в подземных теплицах используют технологию «теплых полов»: нагревательный элемент - электрический кабель - защищают металлической решеткой или заливают бетоном.

Во втором случае почву для грядок насыпают поверх бетона или выращивают зелень в горшках и вазонах.

Применение теплого пола может быть достаточным для обогрева всей теплицы, если хватает мощности. Но эффективнее и комфортнее для растений использование комбинированного обогрева: теплый пол + подогрев воздуха. Для хорошего роста им нужна температура воздуха 25-35 градусов при температуре земли примерно 25 С.

ЗАКЛЮЧЕНИЕ

Конечно, постройка заглубленной теплицы обойдется дороже, а усилий потребуется больше, чем при строительстве аналогичной теплицы обычной конструкции. Но вложенные в теплицу-термос средства со временем оправдываются.

Во-первых, это экономия энергии на обогреве. Каким бы образом ни отапливалась в зимнее время обычная наземная теплица, это будет всегда дороже и труднее аналогичного способа обогрева в подземной теплице. Во-вторых, экономия на освещении. Фольгированная теплоизоляция стен, отражая свет, увеличивает освещенность в два раза.Микроклимат в углубленной теплице зимой для растений будет благоприятнее, что непременно отразится на урожайности. Легко приживутся саженцы, превосходно будут чувствовать себя нежные растения. Такая теплица гарантирует стабильный, высокий урожай любых растений круглый год.

Температура грунта непрерывно изменяется по глубине и во времени. Она зависит от целого ряда факторов, из которых многие трудно поддаются учету. К последним, например, относится: характер растительности, экспозиция склона по сторонам света, затененность, снеговой покров, характер самих грунтов, наличие надмерзлотных вод и др. Однако температура грунта, как по величине, так и по характеру распределения сохраняется из года в год достаточно устойчиво, и решающее влияние здесь остается за температурой воздуха.

Температура грунта на разных глубинах и в различные периоды года может быть получена непосредственными измерениями в термоскважинах, которые закладываются в процессе изысканий. Но такой способ требует длительных наблюдений и значительных расходов, что не всегда оправдано. Полученные по одной-двум скважинам данные распространяются на большие площади и протяжения, значительно искажая действительность так, что расчетные данные о температуре грунта во многих случаях оказываются более надежными.

Температура грунта вечномерзлой толщи на любой глубине (до 10 м от поверхности) и на любой период года может быть определена по формуле:

tr = mt°, (3.7)

где z – глубина, отсчитываемая от ВГМ, м;

tr – температура грунта на глубине z, в град.

τr– время равное году (8760 ч);

τ - время, отсчитываемое вперед (через 1 января) от момента начала осеннего замерзания грунта до момента, для которого ведется отсчет температуры, в ч;

еxp х – экспонента (показательная функция exp берется по таблицам);

m – коэффициент, зависящий от периода года (для периода октябрь – май m = 1,5-0,05z, а для периода июнь- сентябрь m = 1)

Самая низкая температура на заданной глубине будет тогда, когда косинус в формуле (3.7) станет равным -1, т. е. минимальная температура грунта за год на данной глубине составит

tr мин = (1,5-0,05z) t°, (3.8)

Максимальная температура грунта на глубине z ,будет тогда, когда косинус примет значение, равное единице т.е.

tr макс = t°, (3.9)

Во всех трех формулах значение объемной теплоемкости С м следует рассчитывать для температуры грунта t° по формуле (3.10).

С 1 м = 1/W, (3.10)

Температуру грунта в слое сезонного оттаивания можно также определить расчетом, приняв во внимание, что изменение температуры в этом слое достаточно точно апроксимируется линейной зависимостью при следующих температурных градиентах (табл.3.1).

Рассчитав по одной из формул (3.8) – (3.9) температуру грунта на уровне ВГМ, т.е. положив в формулах Z=0, затем с помощью таблицы 3.1 определяем температуру грунта на заданной глубине в слое сезонного оттаивания. В самых верхних слоях грунта, примерно до 1 м от поверхности, характер температурных колебаний очень сложен.


Таблица 3.1

Температурный градиент в слое сезонного оттаивания на глубине ниже 1 м от поверхности земли

Примечание. Знак градиента показан в направлении к дневной поверхности.

Чтобы получить расчетную температуру грунта в метровом слое от поверхности, можно поступить следующим образом. Вычислить температуру на глубине 1 м и температуру дневной поверхности грунта, а затем путем интерполяции по этим двум значениям определить температуру на заданной глубине.

Температуру на поверхности грунта t п в холодный период года можно принимать равной температуре воздуха. В летний период:

t п = 2+1,15 t в, (3.11)

где t п - температура на поверхности в град.

t в – температура воздуха в град.

Температура грунта при несливающейся криолитозоне рассчитывается иначе, чем при сливающейся. Практически можно считать, что температура на уровне ВГМ будет равна 0°С в течении всего года. Расчетную температуру грунта вечномерзлой толщи на заданной глубине можно определить интерполяцией, считая, что она меняется на глубине по линейному закону от t° на глубине 10 м до 0°С на глубине залегания ВГМ. Температуру в талом слое h т можно принимать от 0,5 до 1,5°С.

В слое сезонного промерзания h п температуру грунта можно вычислить так же, как для слоя сезонного оттаивания сливающейся криолитозоны, т.е. в слое h п – 1 м по температурному градиенту (табл. 3.1), считая температуру на глубине h п равной 0°С в холодный период года и 1°С в летнее время. В верхнем метровом слое грунта температура определяется по интерполяции между температурой на глубине 1 м и температурой на поверхности.

В вертикальных коллекторах отбирается энергия из земли с помощью геотермальных земляных зондов. Это закрытые системы со скважинами диаметром 145-150мм и глубиной от 50 до 150м, по которым прокладываются трубы. На конце трубопровода инсталлируется возвратное U колено. Обычно установка осуществляется с помощью одноконтурного зонда с трубами 2x d40 («шведская система»), или двухконтурного зонда с трубами 4x d32. Двухконтурные зонды должны достигать на 10-15% больший отбор тепла. При скважинах глубже чем 150 м нужно использовать трубы 4xd40 (для понижения потери давления).

В настоящее время большая часть скважин для отбора тепла земли имеет глубину 150 м. На большей глубине можно получить больше тепла, но при этом затраты на такие скважины будут очень высоки. Поэтому важно заранее просчитать затраты на установку вертикального коллектора в сравнении с предполагаемой экономией в будущем. В случае инсталляции системы активно-пассивного охлаждения более глубокие скважины не делают из-за высшей температуры в почве и более низком потенциале в момент отдачи тепла из раствора окружающей среде. В системе циркулирует незамерзающая смесь (спирт, глицерин, гликоль), разбавленная водой до нужной консистенции незамерзания. В тепловом насосе отдает тепло, отобранное у земли, хладагенту. Температура земли на глубине 20 м примерно 10°C, и растет каждые 30м на 1°C. На нее не оказывают влияние климатические условия, и поэтому можно рассчитывать на качественный отбор энергии и зимой и летом. Нужно добавить, что температура в земле немного отличается в начале сезона (сентябрь-октябрь) от температуре в конце сезона (март-апрель). Поэтому необходимо учитывать при расчете глубины вертикальных коллекторов длину отопительного сезона в месте инсталляции.

При отборе тепла с помощью геотермальных вертикальных зондов очень важным являются правильные расчеты и конструкция коллекторов. Для проведения грамотных расчетов необходимо знать, возможно ли бурение в месте инсталляции до желаемой глубины.

Для теплового насоса мощностью 10kW необходимо примерно 120-180 m скважины. Скважины должна быть размещены минимум 8м друг от друга. Количество и глубина скважин зависит от геологических условий, наличие подземных вод, способности почвы удерживать тепло и технологии бурения. При бурении нескольких скважин общая желаемая длина скважины разделится на количество скважин.

Преимуществом вертикального коллектора перед горизонтальным является меньший участок земли для использования, более стабильный источник тепла, и независимость источника тепла на погодных условиях. Минусом вертикальных коллекторов являются высокие затраты на земляные работы и постепенное охлаждение земли возле коллектора (необходимы грамотные расчеты необходимой мощности при проектировании).

Расчет необходимой глубины скважин

    Информация,необходимая для предварительного расчета глубины и количества скважин:

    Мощность теплового насоса

    Выбранный тип отопления - «теплые полы», радиаторы, комбинированное

    Предполагаемое количество часов эксплуатации теплового насоса за год, покрытие потребности в энергии

    Место инсталляции

    Использование геотермальной скважины - отопление, обогрев ГВС, сезонный подогрев бассейна, круглогодичный подогрев бассейна

    Использование функции пассивного (активного) охлаждения в объекте

    Общее годовое потребление тепла для отопления (MВ/час)



Случайные статьи

Вверх